รูปแบบพฤติกรรมความเฉพาะเจาะจงของการกิน ปฏิสัมพันธ์ระหว่างไวรัสและองค์ประกอบของเซลล์เจ้าบ้าน และกลไกการถ่ายทอดไวรัสโรคพืชแบบไหลเวียนชนิดไม่แพร่ขยายและแพร่ขยายโดยแมลงพาหะ

Main Article Content

ฐานัฎ ณ พัทลุง
วิภา ตังคนานนท์

บทคัดย่อ

บทความวิชาการฉบับนี้ได้ทบทวนวรรณกรรมและให้มุมมองที่มุ่งเน้นถึงกลไกการถ่ายทอดไวรัสโรคพืชแบบไหลเวียนโดยแมลงพาหะ ซึ่งสามารถจำแนกออกเป็นสองรูปแบบหลัก ได้แก่ แบบไหลเวียนชนิดไม่แพร่ขยาย และแบบไหลเวียนชนิดแพร่ขยาย กลไกการถ่ายทอดไวรัสแบบไหลเวียนนี้ ไวรัสอาศัยกระบวนการเคลื่อนผ่านเยื่อบุผิวเซลล์ของแมลงในลักษณะของกระบวนการนำเข้าและนำออกจากเซลล์แมลง ไวรัสจะเพิ่มจำนวนและแพร่กระจายไปยังอวัยวะภายในของแมลง โดยเฉพาะอย่างยิ่งอวัยวะในระบบทางเดินอาหาร กระแสโลหิต ช่องว่างกลางลำตัว และต่อมน้ำลายของแมลง ตามลำดับ กลไกนี้เกิดจากปฏิสัมพันธ์ที่จำเพาะระหว่างโปรตีนตัวรับสัญญาณบริเวณพื้นผิวอนุภาคไวรัส และโปรตีนตัวรับสัญญาณบริเวณเซลล์ของอวัยวะภายในแมลงพาหะ ทั้งนี้ไวรัสที่มีการเพิ่มจำนวนในเซลล์แมลงพาหะจะแฝงตัวโดยไม่ก่อให้เกิดการเปลี่ยนแปลงลักษณะทางกายภาพของแมลง แต่มีความคงทนในตัวแมลงได้ในช่วงวันถึงสัปดาห์ และตลอดชั่วอายุขัยของแมลง ดังนั้นการเรียนรู้และการเข้าใจถึงพฤติกรรมตามธรรมชาติ ความเฉพาะเจาะจงของบริเวณปฏิสัมพันธ์ระหว่างไวรัสกับเนื้อเยื่อของแมลงในการเพิ่มจำนวนของไวรัสภายในเซลล์ของแมลง และกลไกการถ่ายทอดไวรัสโรคพืชโดยแมลงพาหะนี้ จะสามารถนำไปประยุกต์ใช้ในการควบคุมและลดความเสียหายที่เกิดขึ้นจากการแพร่ระบาดของไวรัสโรคพืชและแมลงพาหะต่ออุตสาหกรรมการเกษตรของไทยได้อย่างมีประสิทธิภาพและเกิดประสิทธิผลอย่างยั่งยืน

Article Details

บท
บทความวิจัย (research article)

References

Alam, M.Z., A.R. Crump, M.M. Haque, M.S. Islam, E. Hossain, S.B. Hasan, S.B. Hasan, and M.S. Hossain. 2016. Effects of integrated pest management on pest damage and yield components in a rice agro-ecosystem in the Barisal region of Bangladesh. Frontiers in Environmental Science. 4(22): 1-10.

Andret-Link, P., and M. Fuchs. 2005. Transmission specificity of plant viruses by vectors. Journal of Plant Pathology. 83(7): 153-165.

Balaji, B., D.B. Bucholtz, and J.M. Anderson. 2003. Barley yellow dwarf virus and Cereal yellow dwarf virus quantification by real-time polymerase chain reaction in resistant and susceptible plants. Phytopathology. 93(11): 1386-1392.

Berger, P.H., and T.P. Pirone. 1986. The effect of helper component on the uptake and localization of potyviruses in Myzus persicae. Virology. 153(2): 256-261.

Brault, V., J. Mutterer, D. Scheidecker, M.T. Simonis, E. Herrbach, K. Richards, and V. Ziegler-Graff. 2000. Effects of point mutations in the readthrough domain of the Beet western yellows virus minor capsid protein on virus accumulation in planta and on transmission by aphids. Journal of Virology. 74(3): 1140-1148.

Bruyere, A., V. Brault, V. Ziegler-Graff, M.T. Simonis, J.F. Van den Heuvel, K. Richards, H. Guilley, G. Jonard, and E. Herrbach. 1997. Effects of mutations in the Beet western yellows virus readthrough protein on its expression and packaging and on virus accumulation, symptoms, and aphid transmission. Virology. 230(2): 323-334.

Buchmann, J.P., and E.C. Holmes. 2015. Cell walls and the convergent evolution of the viral envelope. Microbiology and Molecular Biology Reviews. 79(4): 403-418.

Castle, S., J. Palumbo, and N. Prabhaker. 2009. Newer insecticides for plant virus disease management. Virus Research. 141(2): 131-139.

Chay, C.A., U.B. Gunasinge, S.P. Dinesh-Kumar, W.A. Miller, and S.M. Gray. 1996. Aphid transmission and systemic plant infection determinants of Barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough domain and 17-kDa protein, respectively. Virology. 219(1): 57-65.

Cheng, S.L., L.L. Domier, and C.J. D'Arcy. 1994. Detection of the readthrough protein of Barley yellow dwarf virus. Virology. 202(2): 1003-1006.

Cullather, N. 2004. Miracles of modernization: The green revolution and the apotheosis of technology. Diplomatic History. 28(2): 227-254.

Czosnek, H., A. Hariton-Shalev, I. Sobol, R. Gorovits, and M. Ghanim. 2017. The incredible journey of Begomoviruses in their whitefly vector. Viruses. 9: pii: E273.

Dader, B., C. Then, E. Berthelot, M. Ducousso, J.C.K. Ng, and M. Drucker. 2017. Insect transmission of plant viruses: Multilayered interactions optimize viral propagation. Insect Science. 24(6): 929-946.

Dardick, C. 2007. Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. Molecular Plant-Microbe Interactions. 20(8): 1004-1017.

Dietzgen, R.G., K.S. Mann, and K.N. Johnson. 2016. Plant virus-insect vector interactions: Current and potential future research directions. Viruses. 8(11): 303.

Domashevskiy, A.V., S. Williams, C. Kluge, and S.-Y. Cheng. 2017. Plant translation initiation complex eIFiso4F directs pokeweed antiviral protein to selectively depurinate uncapped Tobacco etch virus RNA. Biochemistry. 56(45): 5980-5990.

DoMyOwn. Pest control chemicals. Available: https://www.domyown.com/pest-control-chemicals-a-318.html. Accessed Feb.27, 2021.

El-Wakeil, N. 2013. Botanical pesticides and their mode of action. Gesunde Pflanzen. 65(4): 125-149.

Froissart, R., J. Doumayrou, F. Vuillaume, S. Alizon, and Y. Michalakis. 2010. The virulence-transmission trade-off in vector-borne plant viruses: a review of (non-)existing studies. Philosophical Transactions of the Royal Society B: Biological Sciences. 365(1548): 1907-1918.

Garret, A., C. Kerlan, and D. Thomas. 1993. The intestine is a site of passage for Potato leafroll virus from the gut lumen into the haemocoel in the aphid vector, Myzus persicae Sulz. Archives of Virology. 131(3-4): 377-392.

Gildow, F.E., and W.F. Rochow. 1980. Role of accessory salivary glands in aphid transmission of Barley yellow dwarf virus. Virology. 104(1): 97-108.

Gray, S., and F.E. Gildow. 2003. Luteovirus-aphid interactions. Annual Review of Phytopathology. 41: 539-566.

Gray, S., M. Cilia, and M. Ghanim. 2014. Circulative, "nonpropagative" virus transmission: An orchestra of virus-, insect-, and plant-derived instruments. Advances in Virus Research. 89: 141-199.

Han, Y., C. Wu, L. Yang, D. Zhang, and Y. Xiao. 2018. Resistance to Nilaparvata lugens in rice lines introgressed with the resistance genes Bph14 and Bph15 and related resistance types. PLoS One. 13(6): e0198630.

Haupt, S., G.H. Cowan, A. Ziegler, A.G. Roberts, K.J. Oparka, and L. Torrance. 2005. Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell. 17(1): 164-181.

Hohn, T. 2007. Plant virus transmission from the insect point of view. Proceedings of the National Academy of Sciences of the United States of America. 104(46): 17905-17906.

Huo, Y., W. Liu, F. Zhang, X. Chen, L. Li, Q. Liu, Y. Zhou, T. Wei, R. Fang, and X. Wang. 2014. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector. PLoS Pathogens. 10(3): e1003949.

Jia, D., H. Chen, A. Zheng, Q. Chen, Q. Liu, L. Xie, Z. Wu, and T. Wei. 2012a. Development of an insect vector cell culture and RNA interference system to investigate the functional role of Fijivirus replication protein. Journal of Virology. 86(10): 5800-5807.

Jia, D., N. Guo, H. Chen, F. Akita, L. Xie, T. Omura, and T. Wei. 2012b. Assembly of the viroplasm by viral non-structural protein Pns10 is essential for persistent infection of Rice ragged stunt virus in its insect vector. Journal of General Virology. 93(Pt10): 2299-2309.

Kim, D., M.W. Thairu, and A.K. Hansen. 2016. Novel insights into insect-microbe interactions-role of epigenomics and small RNAs. Frontiers in Plant Science. 7: 1164.

Li, S., R. Xiong, X. Wang, and Y. Zhou. 2011. Five proteins of Laodelphax striatellus are potentially involved in the interactions between Rice stripe virus and vector. PLoS One. 6(10): e26585.

Li, S., X. Li, and Y. Zhou. 2018. Ribosomal protein L18 is an essential factor that promote Rice stripe virus accumulation in small brown planthopper. Virus Research. 247: 15-20.

Liao, Z., Q. Mao, J. Li, C. Lu, W. Wu, H. Chen, Q. Chen, D. Jia, and T. Wei. 2017. Virus-induced tubules: A vehicle for spread of virions into ovary oocyte cells of an insect vector. Frontiers in Microbiology. 8: 475.

Ling, K.C. 1972. Rice virus diseases. International Rice Research Institute (IRRI). Los Baños, the Philippines.

Liu, S., S. Sivakumar, Z. Wang, B.C. Bonning, and W.A. Miller. 2009. The readthrough domain of Pea enation mosaic virus coat protein is not essential for virus stability in the hemolymph of the pea aphid. Archives of Virology. 154(3): 469-479.

Mao, Q., Z. Liao, J. Li, Y. Liu, W. Wu, H. Chen, Q. Chen, D. Jia, and T. Wei. 2017. Filamentous structures induced by a Phytoreovirus mediate viral release from salivary glands in its insect vector. Journal of Virology. 91(12): e00265-00217.

Mousavi, S.R., and H. Eskandari. 2011. A general overview on intercropping and its advantages in sustainable agriculture. Journal of Applied Environmental and Biological Sciences. 1(11): 482-486.

Mustafayev, E.S., L. Svanella-Dumas, S.G. Kumari, Z.I. Akparov, and T. Candresse. 2013. First report of Barley yellow dwarf virus and Cereal yellow dwarf virus affecting cereal crops in Azerbaijan. Plant Disease. 97(6): 849.

Na Phatthalung, T., W. Tangkananond, and W. Rattanakarn. 2015a. Plant quarantine of the kingdom of Thailand. Science (Journal of the Science Society of Thailand under the Patronage of His Majesty the King). 69(5): 85-91.

Na Phatthalung, T., W. Tangkananond, and W. Rattanakarn. 2015b. Plant quarantine of the kingdom of Thailand. Science (Journal of the Science Society of Thailand under the Patronage of His Majesty the King). 69(6): 84-91.

Na Phatthalung, T., W. Rattanakarn, and W. Tangkananond. 2017a. The application of chlorophyll absorbents to enhance efficiency of Rice ragged stunt virus detection in plant sap by dot-immunobinding assay. King Mongkut's Agricultural Journal. 35(2): 104-115.

Na Phatthalung, T., and W. Tangkananond. 2017b. The feeding behavior on rice plants of brown planthopper in the central irrigated rice field of Thailand. Thai Journal of Science and Technology. 6(4): 369-391.

Na Phatthalung, T., W. Tangkananond, and W. Rattanakarn. 2017c. The efficiency of Rice ragged stunt virus detection in the brown planthoppers by dot-immunobinding assay. Thai Journal of Science and Technology. 6(3): 236-246.

Na Phatthalung, T., W. Rattanakarn, and W. Tangkananond. 2018a. Efficiency of an indirect NCM-ELISA for assessment of infectivity survival and Rice ragged stunt virus transmission from frozen rice plant tissue samples by an insect vectors, the brown planthopper (Nilaparvata lugens Stål), pp. 88-95. In: Proceeding of the 56th Kasetsart University Annual Conference, Jan 30th-Feb 2nd 2018, Kasetsart University, Bangkok, Thailand.

Na Phatthalung, T., and W. Tangkananond. 2018b. Interaction and transmission efficiency of Rice ragged stunt virus from frozen rice plant tissue by the brown planthopper. Paper presented at the RRi progress IV: Unshelving research works with innovation tactics, July 23rd 2018, Queen Sirikit National Convention Center (QSNCC), Bangkok, Thailand.

Ng, J.C., and B.W. Falk. 2006. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annual Review of Phytopathology. 44: 183-212.

Ng, J.C., and J.S. Zhou. 2015. Insect vector-plant virus interactions associated with non-circulative, semi-persistent transmission: Current perspectives and future challenges. Current Opinion in Virology. 15: 48-55.

Otuka, A. 2013. Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia. Frontiers in Microbiology. 4: 309.

Pedersen, K.J. 1991. Invited review: Structure and composition of basement membranes and other basal matrix systems in selected invertebrates. Acta Zoologica. 72(4): 181-201.

Perilla-Henao, L.M., and C.L. Casteel. 2016. Vector-borne bacterial plant pathogens: Interactions with hemipteran insects and plants. Frontiers in Plant Science. 7: 1163.

Pinheiro, P.V., M. Ghanim, M. Alexander, A.R. Rebelo, R.S. Santos, B.C. Orsburn, S. Gray, and M. Cilia. 2017. Host plants indirectly influence plant virus transmission by altering gut cysteine protease activity of aphid vectors. Molecular & Cellular Proteomics. 16(4 Suppl 1): S230-S243.

Pitija, K., W. Kamolsukyumyong, A. Vanavichit, P. Sookwong, and S. Mahatheeranont. 2014. Monoterpenoid allelochemicals in resistance rice varieties against brown planthoppers, Nilaparvata lugens (Stål). Journal of Advanced Agricultural Technologies. 1(2): 82-88.

Powell, G. 1991. Cell membrane punctures during epidermal penetrations by aphids: Consequences for the transmission of two potyviruses. Annals of Applied Biology. 119(2): 313-321.

Qiao, W., V. Medina, and B.W. Falk. 2017. Inspirations on virus replication and cell-to-cell movement from studies examining the cytopathology induced by Lettuce infectious yellows virus in plant cells. Frontiers in Plant Science. 8: 1672.

Ron, D., and D. Mochly-Rosen. 1995. An autoregulatory region in protein kinase C: The pseudoanchoring site. Proceedings of the National Academy of Sciences of the United States of America. 92(2): 492-496.

Schrader, G., and J.-G. Unger. 2003. Plant quarantine as a measure against invasive alien species: The framework of the international plant protection convention and the plant health regulations in the European Union. Biological Invasions. 5: 357-364.

Smith, H.A., and O.E. Liburd. 2012. Intercropping, crop diversity and pest management. Entomology and Nematology Department, UF/IFAS Extension. 1-7.

Tamborindeguy, C., B. Monsion, V. Brault, L. Hunnicutt, H.J. Ju, A. Nakabachi, and E. Van Fleet. 2010. A genomic analysis of transcytosis in the pea aphid, Acyrthosiphon pisum, a mechanism involved in virus transmission. Insect Molecular Biology. 19(Suppl 2): 259-272.

Thorburn, C. 2015. The rise and demise of integrated pest management in rice in Indonesia. Insects. 6(2): 381-408.

Tsvetkov, I., A. Atanassov, M. Vlahova, L. Carlier, N. Christov, F. Lefort, K. Rusanov, I. Badjakov, I. Dincheva, M. Tchamitchian, G. Rakleova, L. Georgieva, L. Tamm, A. Iantcheva, J. Herforth-Rahmé, E. Paplomatas, and I. Atanassov. 2018. Plant organic farming research – current status and opportunities for future development. Biotechnology & Biotechnological Equipment. 32(2): 241-260

.

Wang, H., K. Wu, Y. Liu, Y. Wu, and X. Wang. 2015. Integrative proteomics to understand the transmission mechanism of Barley yellow dwarf virus-GPV by its insect vector Rhopalosiphum padi. Scientific Reports. 5: 10971.

Webster, C.G., E. Pichon, M. van Munster, B. Monsion, M. Deshoux, D. Gargani, F. Calevro, J. Jimenez, A. Moreno, B. Krenz, J.R. Thompson, K.L. Perry, A. Fereres, S. Blanc, and M. Uzest. 2018. Identification of plant virus receptor candidates in the stylets of their aphid vectors. Journal of Virology. 92(14): e00432-00418.

Wei, T., A. Kikuchi, Y. Moriyasu, N. Suzuki, T. Shimizu, K. Hagiwara, H. Chen, M. Takahashi, T. Ichiki-Uehara, and T. Omura. 2006a. The spread of Rice dwarf virus among cells of its insect vector exploits virus-induced tubular structures. Journal of Virology. 80(17): 8593-8602.

Wei, T., T. Shimizu, K. Hagiwara, A. Kikuchi, Y. Moriyasu, N. Suzuki, H. Chen, and T. Omura. 2006b. Pns12 protein of Rice dwarf virus is essential for formation of viroplasms and nucleation of viral-assembly complexes. Journal of General Virology. 87(Pt2): 429-438.

Weintraub, P.G., and M.J. Berlinger. 2004. Physical control in greenhouses and field crops. pp. 301-318. In: A.R. Horowitz and I. Ishaaya (Eds.). Insect Pest Management: Field and Protected Crops. Springer-Verlag Berlin Heidelberg, Germany.

Whitfield, A.E., B.W. Falk, and D. Rotenberg. 2015. Insect vector-mediated transmission of plant viruses. Virology. 479-480: 278-289.

Wu, W., L. Zheng, H. Chen, D. Jia, F. Li, and T. Wei. 2014. Nonstructural protein NS4 of Rice stripe virus plays a critical role in viral spread in the body of vector insects. PLoS One. 9(2): e88636.

Zhou, G., T. Wang, Y. Lou, J. Cheng, H. Zhang, and J.H. Xu. 2014. Identification and characterization of microRNAs in small brown planthopper (Laodephax striatellus) by next-generation sequencing. PLoS One. 9(7): e103041.