Identification of fungal pathogen causing charcoal rot disease of Mung Bean and infection to economically important plants

Main Article Content

Prapaporn Paengda
Ratiya Pongpisutta
Chainarong Rattanakreetakul

Abstract

Charcoal rot disease affects to mung bean product and quality in Thailand. The fungal pathogen infects mung bean all growth stages from seedling to harvesting. Moreover, it can survive in the soil for a long period of time. The aims of this research were to identify the fungal pathogen causing charcoal rot of mung bean and to investigate aggressiveness on other economically important plants. Twenty-six isolates of the pathogen collected from 6 areas in Chai Nat, Uthai Thani, Nakhon Sawan, Lopburi, Phetchabun and Nan provinces. Morphological and colony characteristics were investigated, then all isolates were grouped into 5 groups. Representative isolates of each group were considered using molecular technique. Identification was based on sequencing of ITS region (ITS1-5.8s-ITS2) and TEF1-alpha contained sequences approximately 800 and 900 bp, respectively, then identified as Macrophomina phaseolina. Pathogenicity test on 5 different economically plant crops such as mungbean cv. Chai Nat 72, peanuts cv. Thainan, cowpea black grain cv. Ubon Ratchathani, waxy corn cv. Big white 852 F1 and black sesame cv. Ubon Ratchathani 3 were examined using unwounded inoculation by M. phaseolina NAN203 on seed coat and root. Diseased symptoms occurred on all crops, similarly.  Stem and root lesions first appeared water soaked but then turn a dull light brown with senesced leaves still attached to the plants, later turn to be dark brown necrotic symptom. The infected plants wilted and the fungus rapidly colonized the remaining tissues. The dead tissues turned black as microsclerotia were abundantly produced. This research indicated aggressiveness of the single fungus, M. phaseolina which can infect various hosts, it is very crucial to develop disease management program in the field, absolutely.

Article Details

How to Cite
Paengda, P. ., Pongpisutta, R. ., & Rattanakreetakul, C. . (2021). Identification of fungal pathogen causing charcoal rot disease of Mung Bean and infection to economically important plants. Khon Kaen Agriculture Journal, 50(4), 959–971. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/251776
Section
บทความวิจัย (research article)

References

กรมวิชาการเกษตร. 2545. คู่มือโรคพืชไร่. กองโรคพืชและจุลชีววิทยา,กรมวิชาการเกษตร, โรงพิมพ์คุรุสภาลาดพร้าว, กรุงเทพฯ.

พจนา ตระกูลสุขรัตน์, อมรรัตน์ ภู่ไพบูลย์ และพรพิมล อธิปัญญาคม. 2552. สํารวจ รวบรวม และจําแนกราสกุล Macrophomina สาเหตุโรคพืชเศรษฐกิจ. กลุ่มวิจัยโรคพืช, สำนักวิจัยพัฒนาการอารักขาพืช, กรมวิชาการเกษตร, กรุงเทพฯ.

สำนักงานเศรษฐกิจการเกษตร. 2562. สารสนเทศเศรษฐกิจการเกษตรรายสินค้า ปี 2562. แหล่งข้อมูล: http://www.oae.go.th/assets/portals/1/ebookcategory/38_commodity2562/#page=30. ค้นเมื่อ 15 มกราคม 2564.

Anthony, K.K., D.S. George, H.K.B. Singh, S.M. Fung, V. Santhirasegaram, and Z. Razali. 2017. Reactive oxygen species activity and antioxidant properties of Fusarium infected bananas. Phytopathology. 165: 213-222.

Carbone, I., and L.M. Kohn. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 91: 553-556.

Dhingra, O.D., and J.B. Sinclair. 1978. Biology and pathology of Macrophomina phaseolina. Minas Gerais Universidade Federal de Vicosa, Brazil.

Huda-Shakirah, R.A., Y.J. Kee, A.B.M. Hafifi, N.N.M. Azni, L. Zakaria, and M.H. Mohd. 2019. Identification and characterization of Macrophomina phaseolina causing leaf blight on white spider lilies (Crinum asiaticum and Hymenocallis littoralis) in Malaysia. Mycobiology. 47: 408-414.

Jacobs, K., D.R. Bergdahl, M.J. Wingfield, S. Halik, K.A. Seifert, D.E. Bright, and B.D. Wingfield. 2004. Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycological Research. 108: 411-418.

Karibasappa, C.S., B.N. Bhat, and S.C. Rao. 2018. Survey for the disease incidence of root rot of sesame caused by Macrophomina phaseolina (Tassi.) Goid, in major sesame growing areas of Telangana. Journal of Pharmacognosy and Phytochemistry. 7: 655-657.

Khan, A.N., F. Shair, K. Malik, Z. Hayat, M.A. Khan, F.Y. Hafeez, and M.N. Hassan. 2017. Molecular identification and genetic characterization of Macrophomina phaseolina strains causing pathogenicity on sunflower and chickpea. Frontiers in Microbiology. 8: 1309.

Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33: 1870-1874.

Machado, R.A., D.B. Pinho, D.J. Soares, A.A.M. Gomes, and O.L. Pereira. 2018. Bayesian analyses of five gene regions reveal a new phylogenetic species of Macrophomina associated with charcoal rot on oilseed crops in Brazil. European Journal of Plant Pathology. 153: 89–100.

Manici, L.M., F. Caputo, and C. Cerato. 1995. Temperature responses of isolates of Macrophomina phaseolina from different climatic regions of sunflower production in Italy. Plant Disease. 79: 834-838.

Mehan, V.K., and D. McDonald. 1997. Charcoal rot. In Compendium of peanut diseases, 2nd ed. N. Kokalis-Burelle et al. eds. APS Press. St. Paul, MN, USA.

Narayanasamy, P. 2001. Plant pathogen detection and disease diagnosis. 2nd Edition Marcel Dekker, Inc. USA. Available. https://books.google.co.th/books?id. Accessed Jan. 10, 2021.

Partridge, D. 2021. Macrophomina phaseolina. Online Available: https://projects.ncsu.edu/cals/course/ pp728/Macrophomina/macrophominia_phaseolinia.HTM. Accessed Jan. 4, 2021.

Ndiaye, M., A.J. Termorshuizen, and A.H.C. van Bruggen. 2010. Effects of compost amendment and the biocontrol agent Clonostachys rosea on the development of charcoal rot (Macrophomina phaseolina) on cowpea. Journal of Plant Pathology. 92: 173–180.

Ndiaye, M., M.P. Sarr, N. Cisse, and I. Ndoye. 2015. Is the recently described Macrophomina pseudophaseolina pathogenically different from Macrophomina phaseolina?. African Journal of Microbiology Research. 9: 2232-2238.

Pandey, K.A., R.R. Burlakoti, A. Rathore, and R.M. Nair. 2020. Morphological and molecular characterization of Macrophomina phaseolina isolated from three legume crops and evaluation of mungbean genotypes for resistance to dry root rot. Crop Protection. 127: 104962.

Pongpisutta, R., W. Winyarat, and C. Rattanakreetakul. 2003. RFLP identification of Colletotrichum species isolated from chilli in Thailand. Acta Horticulturae. 937: 181-186.

Radwan, O., L.V. Rouhana, G.L. Hartman, and S.S. Korban. 2014. Genetic mechanisms of host-pathogen interactions for charcoal rot in soybean. Plant Molecular Biology Reporter. 32: 617-629.

Rani, N. 2014. Studies on Macrophomina root rot of groundnut (Arachis hypogaea L.). available: https://www.semanticscholar.org/paper/Studies-on-macrophomina-root-rot-of-groundnut-L.)-Rani/79c1cdd36008aab619172b01f2eec070b30553bd. Accessed Mar. 16, 2021.

Ryley, M.J. 2015. Charcoal rot of soybean. Online available: http://www.australianoilseeds.com/data/assets/pdf _file/0020/10298/Charcoal_rot_of_soybean_Feb_2015.pdf. Accessed Mar. 16, 2021.

Saleh, A.A., H.U. Ahmed, T.C. Todd, S.E. Travers, K.A. Zeller, J.F. Leslif, and K.A. Garrett. 2010. Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean and sorghum. Molecular Ecology. 19: 79-91.

Sarr, P.M., M.B. Ndiaye, J.Z. Groenewald, and P.W. Crous. 2014. Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. Phytopathologia Mediterranea. 53: 250-268.

Satpathi, K.A., and N.M. Gohel. 2018. Cultural and morphological variability among the isolates of Macrophomina phaseolina (Tassi) Goid. causing stem and root rot of sesame (Sesamum indicum L.). International Journal of Chemical Studies. 6: 2890-2893.

Shehu, K., and M.T. Bello. 2011. Effect of environmental factors on the growth of Aspergillus Species Associated with stored millet grains in Sokoto. Nigerian Journal of Basic and Applied Science. 19(2): 218-223.

Smith, G.S., and T.D. Wyllie. 1999. Charcoal rot, Compendium of soybean disease. American Phytopathological Society, St. Paul, MN, USA.

Sohail, M., S. Naseeb, S.K. Sherwani, S. Sultana, S. Aftab, and S. Shahzad. 2009. Distribution of hydrolytic enzymes among native fungi: Aspergillus the pre-dominant genus of hydrolase producer. Pakistan Journal of Botany. 41: 2567–2582.

Su, G., O.S. Suh, R.W. Schneider, and J.S. Rusin. 2001. Host specialization in the charcoal rot fungus, Macrophomina phaseolina. Phytopathology. 92: 120-126.

Sun, S., X. Wang, Z. Zhu, B. Wang, and M. Wang. 2015. Occurrence of charcoal rot caused by Macrophomina phaseolina, an emerging disease of adzuki bean in China. Phytopathology. 164: 1-5.

Sutton, B.C. 1980. The Coelomycetes: Fungi Imperfecti with Pycnidia, Acervuli and Stromata. Commonwealth Mycological Institute. Kew, UK.

Wheeler, H. 1975. “Mechanisms of pathogenesis”. In Plant Pathogenesis. New York.

White, T.J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal RNA gene for phylogenetics. P. 315-322. In: M.A. Innis, D.H. Gelfend, J.J. Sninsky, and T.J. White. PCR protocol: A Guide to Methods and Applications. Academic Press, San Diego.

Zimand, G., L. Valinsky, Y. Elad, I. Chet, and S. Manulis. 1994. Use of RAPD procedure for the identification of Trichoderma stains. Mycological Research. 98: 531-534.

Yu, S.-X., Q.-N. Feng, H.-T. Xie, S. Li, and Y. Zhang. 2017. Reactive oxygen species mediate tapetal programmed cell death in tobacco and tomato. BMC Plant Biology. 17: 76.