Effect of moisture and ensiling day on feed quality of wet concentrates for beef cattle

Main Article Content

Sayan Subepang
Chatchai Kaewpila
Waroon Khota
Suwit Thip-uten

Abstract

The control of ensiling quality was an important factor for using by-products as feed ingredients with high moisture. This research studied the effects of moisture levels and ensiling days on the chemical composition and fermentation quality of wet concentrate. The experiment was a 3 x 5 factorial in a completely randomized design (3 replications/ treatment) with factor A as moisture levels [a1 = 40%, a2 = 50% and a3 = 60% and factor B as ensiling days (b1 = 0 day, b2 = 7 days, b3 = 14 days, b4 = 21 days and b5 = 28 days). All of the feed ingredients were formulated and prepared by thorough mixing. They were then packed in plastic bags (30 kg/bag) under anaerobic conditions. The results showed that there was no interaction between moisture levels and ensiling days on dry matter, organic matter, crude protein and ash (P > 0.05). The trend changes of dry matter contents (P < 0.01) and organic matter contents (P < 0.05) decreased with prolonging ensiling time. By contrast, the crude protein contents of wet concentrates did not different with increasing ensiling day (P > 0.05). The lowest values of pH for wet concentrates were obtained after 7 ensiling days. All fermented wet concentrates had a very good fermentation quality. These results indicated that a moisture content within a range from 40% to 60% was suitable for wet concentrate producing. It needs to be fermented at least 7 ensiling days and could be preserved for up to 28 ensiling days.


 

Article Details

How to Cite
Subepang, S. ., Kaewpila, C. ., Khota, W. ., & Thip-uten, S. . (2022). Effect of moisture and ensiling day on feed quality of wet concentrates for beef cattle. Khon Kaen Agriculture Journal, 50(4), 1185–1193. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/252061
Section
บทความวิจัย (research article)

References

ไกรสิทธิ์ วสุเพ็ญ, สุนทร วิทยาคุณ, เฉลิมพล เยื้องกลาง และไพวัลย์ ศรีนานวล. 2548. ผลของระดับความชื้นต่อคุณภาพของอาหารผสมครบส่วนหมัก ในการประชุมวิชาการครั้งที่ 43 สาขาสัตว์ สัตวแพทย์ศาสตร์ ประมง มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.

บุญส่ง เลิศรัตนพงศ์, วิทยา สุมามาลย์, วิโรจน์ ฤทธิ์ฤาชัย และรำไพร นามสีลี. 2555. การศึกษาคุณภาพของพืชหมักในถุงพลาสติกดำที่อายุการเก็บรักษาต่างๆ. แหล่งข้อมูล: http://nutrition.dld.go.th/KnowledgeCenter/2555/boonsong%209-2555.pdf. ค้นเมื่อ 28 ธันวาคม 2564.

วารุณี พานิชผล, ฉายแสง ไผ่แก้ว, สมคิด พรมมา, โสภณ ชินเวโรจน์, จันทรกานต์ อรนันท์, วิโรจน์ ฤทธิ์ฤาชัย และวรรณาอ่างทอง. 2547. มาตรฐานพืชอาหารสัตว์หมักของกองอาหารสัตว์. กรุงเทพฯ: กองอาหารสัตว์ กรมปศุสัตว์ กระทรวงเกษตรและสหกรณ์.

AOAC, 1995. Official Method of Analysis, 16th ed. Animal Feeds: Association of Official Analytical Chemists, VA, USA.

Cai, Y., Y. Benno, M. Ogawa, S. Ohmomo, S. Kumai, and T. Nakase. 1998. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage. Applied and Environmental Microbiology. 64(8): 2982–2987.

Chauynaron, N., M. Bhuiyan, U. Kanto, and P. Iji. 2015. Variation in Nutrient Composition of Cassava Pulp and its Effects on in vitro Digestibility. Asian Journal of Poultry Science. 9(4): 203-212.

Kaiser, A. G., J. W. Piltz, H. M. Burns, and N. W. Griffiths. 2003. Successful Silage. Dairy Research and Development Corporation and NSW Agriculture, Australia.

Li Ying, H., N. Borjigin, and Z. Yu. 2017. Effect of inoculants and fibrolytic enzymes on the fermentation characteristics, in vitro digestibility and aflatoxins accumulation of whole-crop corn silage. Grassland Science. 63: 69–78.

Lounglawan, P., M. Khungaew, and S. Wisitiporn. 2011. Silage production from cassava peel and cassava pulp as energy source in cattle diets. Journal of Animal and Veterinary Advances. 10: 1007-1011.

McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, and C. A. Morgan. 2002. Animal Nutrition. 6th ed. Longman Scientific and Technical, New York, NY.

Muck, R. E. 2010. Silage microbiology and its control through additives. Revista Brasileira de Zootecnia. 39: 183–191.

Park, H. S., K. C. Choi, J. H. Kim, M. J. So, W. H. Kim, and S. Srisesharam. 2015. Effect of Moisture Content on the Chemical Composition and Fermentation Quality of Italian Ryegrass Haylage. Journal of The Korean Society of Grassland and Forage Science. 35: 131–136.

SAS, 1998. User’s Guide: Statistic, Version 6, 12th ed. SAS Inst. Inc., Cary, NC.

Subepang, S., T. Suzuki, T. Phonbumrung, and K. Sommart. 2018. Enteric methane emissions, energy partitioning, and energetic efficiency of zebu beef cattle fed total mixed ration silage. Asian-Australasian Journal of Animal Sciences. 32(4): 548–555.

Wang, F. and N. Nishino. 2008. Ensiling of soybean curd residue and wet brewers grains with or without other feeds as a total mixed ration. Journal of Dairy Science. 91: 2380–2387.

Wang, J., J. Q. Wang, D. P. Bu, W. J. Guo, Z. T. Song, and J. Y. Zhang. 2010. Effect of storing total mixed rations anaerobically in bales on feed quality. Animal Feed Science and Technology. 161: 94–102.

WTSR. 2010. Nutrient Requirement of Beef Cattle in Indochinese Peninsula. Klungnanavitthaya Press, Khon Kaen, Thailand.

Yuan, X., A. Wen, S. T. Desta, J. Wang, and T. Shao. 2016. Effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage. Asian-Australasian Journal of Animal Science. 30: 804–810.