การแยกและคัดกรองแบคทีเรียเอนโดไฟต์จากไหลสตรอว์เบอร์รีที่มีคุณสมบัติส่งเสริมการเจริญเติบโตของพืชและฤทธิ์ต้านเชื้อราบางชนิด

Main Article Content

ดลฤดี บุญญาภิสิทธิ์
อภิรดี เสียงสืบชาติ
นารีลักษณ์ นาแก้ว
ฐนิตา บุญสร้างสม
วิภา หอมหวล
จวงจันทร์ จำปาทอง

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อแยกแบคทีเรียเอนโดไฟต์จากไหลสตรอว์เบอร์รีและคัดกรองคุณสมบัติในการส่งเสริมการเจริญเติบโตของพืชและฤทธิ์ต้านการเจริญของเชื้อราบางชนิด  จากการศึกษานี้พบว่า แบคทีเรียที่แยกได้จากไหลสตรอว์เบอร์รีจำนวน 117 ไอโซเลตมีความสามารถในการละลายฟอสเฟตเมื่อทดสอบด้วยวิธี Molybdenum-blue method โดยไอโซเลต DB021 มีประสิทธิภาพในการละลายฟอสเฟตได้สูงที่สุดเท่ากับ 234.64±2.64 µg/ml  นอกจากนี้ยังพบว่า ไอโซเลต DB041 สามารถผลิต IAA ได้มากที่สุดเท่ากับ 322.10±0.87 µg/ml เมื่อนำน้ำเลี้ยงส่วนใสมาทำปฏิกิริยากับสารละลาย Salkowski's Reagent  ในการทดสอบด้วยวิธี dual culture พบว่า ไอโซเลต DB065 สามารถยับยั้งการเจริญของเส้นใย Rhizoctonia solani 1406 ได้ดีที่สุดโดยมีเปอร์เซ็นต์การยับยั้งเท่ากับ 42.67±1.59%  ในขณะที่ไอโซเลต DB071 สามารถยับยั้งการเจริญของเส้นใย Fusarium sp. FB3-3 และ Colletotrichum gloeosporioides DBCS-01 ได้ดีที่สุดโดยมีเปอร์เซ็นต์การยับยั้งเท่ากับ 43.05±0.18% และ 54.92±0.26% ตามลำดับ  จากการทดสอบฤทธิ์ยับยั้งการเจริญของเชื้อราจากสารละลายส่วนใสที่ได้จากการเลี้ยงแบคทีเรียในอาหารเหลว 5 ชนิดด้วยวิธี agar well diffusion พบว่า ส่วนใสของไอโซเลต DB071 ที่ได้จากการเพาะเลี้ยงในอาหารสูตร T2 สามารถยับยั้งการเจริญเส้นใยของเชื้อราที่ทดสอบได้ทุกชนิด  เมื่อนำแบคทีเรียทั้ง 8 ไอโซเลตไปวิเคราะห์ลำดับนิวคลีโอไทด์ของยีน 16S rRNA สามารถระบุชนิดของแบคทีเรียได้ดังนี้ คือ Bacillus subtilis DB016 และ DB051, B. siamensis DB071, Microbacterium enclense DB021, Pseudomonas aeruginosa DB065, Enterobacter quasiroggenkampii DB035, Enterobacter sp. DB041 และ DB044 การศึกษานี้เป็นการรายงานในระดับหลอดทดลองครั้งแรกของแบคทีเรียเอนโดไฟต์จากไหลสตรอว์เบอร์รีที่มีศักยภาพในการส่งเสริมการเจริญเติบโตของพืช ไอโซเลตที่มีศักยภาพดีที่สุดจะนำไปทดสอบประสิทธิภาพในการลดความรุนแรงของโรคและช่วยเพิ่มผลิตของสตรอว์เบอร์รีตามหลักการการปฏิบัติทางการเกษตรที่ดี (GAP)

Article Details

บท
บทความวิจัย (research article)

References

คลินิกพืช กลุ่มพัฒนาการตรวจสอบพืช และปัจจัยการผลิต สำนักวิจัย และพัฒนาการเกษตร เขตที่ 1. 2562. โรคเหี่ยวสตรอเบอรี่. จาก แหล่งข้อมูล: http://oard1.doa.go.th/pdf. สืบค้นเมื่อวันที่ 2 กุมภาพันธ์ 2565.

ณรงค์ชัย พิพัฒน์ธนวงศ์, เบ็ญ จารัชด ทองยืน, เวช เต๋จ๊ะ, สาวิตรี ทิวงศ์ และ Hiroshi Akagi. 2554. สตรอว์เบอร์รีพันธุ์พระราชทาน 80. ข่าวสารเกษตรศาสตร์. 56(1): 22-28.

Adeleke, B.S., O.O. Babalola, and B.R. Glick. 2021. Plant growth-promoting root-colonizing bacterial endophytes. Rhizosphere. 20: 100433.

Ali, S., T.C. Charles, and B.R. Glick. 2014. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry. 80: 160-167.

Amaresan, N., V. Jayakumar, K. Kumar, and N. Thajuddin. 2012. Isolation and characterization of plant growth promoting endophytic bacteria and their effect on tomato (Lycopersicon esculentum) and chilli (Capsicum annuum) seedling growth. Annals of Microbiology. 62(2): 805-810.

Banik, S., and B.K. Dey. 1982. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing micro-organisms. Plant and Soil. 69(3): 353-364.

Barman, D., and M.S. Dkhar. 2019. Plant Growth-Promoting potential of endophytic bacteria isolated from Costus speciosus in tropical deciduous forest of eastern Himalaya. In Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 89(3): 841-852.

Borah, M., S. Das, S.S. Bora, R.C. Boro, and M. Barooah. 2021. Comparative assessment of multi-trait plant growth-promoting endophytes associated with cultivated and wild Oryza germplasm of Assam, India. Archives of Microbiology. 203(5): 2007-2028.

Brader, G., S. Compant, B. Mitter, F. Trognitz, and A. Sessitsch. 2014. Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology. 27: 30-37.

Campodónico, V.L., N.J. Llosa, M. Grout, G. Döring, T. Maira-Litrán, and G.B. Pier. 2010. Evaluation of flagella and flagellin of Pseudomonas aeruginosa as vaccines. Infection and Immunity. 78(2): 746-755.

Chen, Y.P., P.D. Rekha, A.B. Arun, F.T. Shen, W.A. Lai, and C.C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied soil Ecology. 34(1): 33-41.

Chernin, L., Z. Ismailov, S. Haran, and I. Chet. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Applied and Environmental Microbiology. 61(5): 1720-1726.

Cipriano, M.A.P., R.D.P. Freitas-Iório, M.R. Dimitrov, S.A.L. de Andrade, E.E. Kuramae, and A.P.D.D. Silveira. 2021. Plant-growth endophytic bacteria improve nutrient use efficiency and modulate foliar N-metabolites in sugarcane seedling. Microorganisms. 9(3): 479.

Corretto, E., L. Antonielli, A. Sessitsch, C. Höfer, M. Puschenreiter, S. Widhalm, K. Swarnalakshmi, and G. Brader. 2020. Comparative genomics of Microbacterium species to reveal diversity, potential for secondary metabolites and heavy metal resistance. Frontiers in Microbiology. 1869.

Cossus, L., F. Roux-Dalvai, I. Kelly, T.T.A. Nguyen, H. Antoun, A. Droit, and R.J. Tweddell. 2021. Interactions with plant pathogens influence lipopeptides production and antimicrobial activity of Bacillus subtilis strain PTB185. Biological Control. 154: 104497.

Cui, L., C. Yang, L. Wei, T. Li, and X. Chen. 2020. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab. Biological Control. 141: 104156.

De Curtis, F., G. Lima, D. Vitullo, and V. De Cicco. 2010. Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Protection. 29(7): 663-670.

de Melo Pereira, G.V., K.T. Magalhães, E.R. Lorenzetii, T.P. Souza, and R.F. Schwan. 2012. A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microbial Ecology. 63(2): 405-417.

Devi, K.A., G. Pandey, A.K.S. Rawat, G.D. Sharma, and P. Pandey. 2017. The endophytic symbiont—Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L. Frontiers in Microbiology. 8: 1897.

Dunlap, C.A., D.A. Schisler, N.P. Price, and S.F. Vaughn. 2011. Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight. The Journal of Microbiology. 49(4): 603-609.

Egamberdieva, D., S.J. Wirth, V.V. Shurigin, A. Hashem, and E.F. Abd_Allah. 2017. Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology. 8: 1887.

Eljounaidi, K., S.K. Lee, and H. Bae. 2016. Bacterial endophytes as potential biocontrol agents of vascular wilt diseases–review and future prospects. Biological Control. 103: 62-68.

Elvia, J.C., P. Ortega-Rodés, and E. Ortega. 2008. Plant inoculation with Pantoea sp., phosphate solubilising-bacteria increases P concentration in leaf tissues. Revista Colombiana de Biotecnología. 10(1): 111-121.

Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Canadian journal of microbiology. 41(2): 109-117.

Guo, Q., W. Dong, S. Li, X. Lu, P. Wang, X. Zhang, Y. Wang, and P. Ma. 2014. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiological Research. 169(78): 533-540.

Gupta, C.P., A. Sharma, R.C. Dubey, and D.K. Maheshwari. 1999. Pseudomonas aeruginosa (GRC~ 1) as a strong antagonist of Macrophomina phaseolina and Fusarium oxysporum. Cytobios-Cambridge. 183-189.

Hallmann, J., and G. Berg. 2006. Spectrum and population dynamics of bacterial root endophytes. Microbial Root Endophytes. 15-31.

Huang, Y., X. Zhang, H. Xu, F. Zhang, X. Zhang, Y. Yan, L. He, and J. Liu. 2022. Isolation of lipopeptide antibiotics from Bacillus siamensis: A potential biocontrol agent for Fusarium graminearum. Canadian Journal of Microbiology. 99(999): 1-9.

Hussain, T., and A.A. Khan. 2021. Biocontrol prospective of Bacillus siamensis-AMU03 against Soil-borne fungal pathogens of potato tubers. Indian Phytopathology. 1-11.

Idris, E.E., D.J. Iglesias, M. Talon, and R. Borriss. 2007. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions. 20(6): 619-626.

Jumpathong, J., N. Nuengchamnong, K. Masin, N. Nakaew, and N. Suphrom. 2019. Thin layer chromatography-bioautography assay for antibacterial compounds from Streptomyces sp. TBRC 8912, a newly isolated actinomycin D producer. Chiang Mai Journal of Science. 46: 839-849.

Khalifa, A.Y., A.M. Alsyeeh, M.A. Almalki, and F.A. Saleh. 2016. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi Journal of Biological Sciences. 23(1): 79-86.

Khan, Z., and S.L. Doty. 2009. Characterization of bacterial endophytes of sweet potato plants. Plant and Soil. 322(1): 197-207.

Kwon, J.W., and S.D. Kim. 2014. Characterization of an antibiotic produced by Bacillus subtilis JW-1 that suppresses Ralstonia solanacearum. Journal of Microbiology and Biotechnology. 24(1): 13-18.

Li, L., M. Ma, R. Huang, Q. Qu, G. Li, J. Zhou, K. Zhang, K. Lu, X. Niu, and J. Luo. 2012. Induction of chlamydospore formation in Fusarium by cyclic lipopeptide antibiotics from Bacillus subtilis C2. Journal of Chemical Ecology. 38(8): 966-974.

Li, W., X.X. Tang, X. Yan, Z. Wu, Z.W. Yi, M.J. Fang, X. Su, and Y.K. Qiu. 2016. A new macrolactin antibiotic from deep sea-derived bacteria Bacillus subtilis B5. Natural Product Research. 30(24). 2777-2782.

Ludueña, L.M., M.S. Anzuay, J.G. Angelini, M. McIntosh, A. Becker, O. Rupp, A. Goesmann, J. Blom, A. Fabra, and T. Taurian. 2019. Genome sequence of the endophytic strain Enterobacter sp. J49, a potential biofertilizer for peanut and maize. Genomics. 111(4): 913-920.

Majeed, A., M.K. Abbasi, S. Hameed, A. Imran, and N. Rahim. 2015. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology. 6: 198.

Mendoza-Arroyo, G.E., M.J. Chan-Bacab, R.N. Aguila-Ramírez, B.O. Ortega-Morales, R.E. Canché Solís, A.O. Chab-Ruiz, K.I. Cob-Rivera, B. Dzib-Castillo, R.E. Tun-Che, and J.C. Camacho-Chab, 2020. Inorganic phosphate solubilization by a novel isolated bacterial strain Enterobacter sp. ITCB-09 and its application potential as biofertilizer. Agriculture. 10(9): 383.

Mohite, B. 2013. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition. 13(3): 638-649.

Montealegre, J. R., R. Reyes, L.M. Pérez, R. Herrera, P. Silva, and X. Besoain. 2003. Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electronic Journal of Biotechnology. 6(2): 115-127.

Mukherjee, S., and D.B. Kearns. 2014. The structure and regulation of flagella in Bacillus subtilis. Annual Review of Genetics. 48: 319-340.

Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta. 27: 31-36.

Ouertani, R., A. Ouertani, M. Mahjoubi, Y. Bousselmi, A. Najjari, H. Cherif, A. Chamkhi, A. Mosbah, H. Khdhira, H. Sghaier, H. Chouchane, A. Cherif, and M. Neifar. 2020. New plant growth-promoting, chromium-detoxifying Microbacterium species isolated from a tannery wastewater: performance and genomic insights. Frontiers in Bioengineering and Biotechnology. 521.

Passari, A.K., V.K. Mishra, V.K. Gupta, M.K. Yadav, R. Saikia, and B.P. Singh. 2015. In vitro and in vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic actinomycetes associates with medicinal plants. PLoS one. 10(9): e0139468.

Pattern, C.L., and B.R. Glick. 2002. Role of Pseudomanas putida indo lactic acid in development of the host plant root system. Applied and Environmental Microbiology. 68: 3795-3801.

Rashid, S., T.C. Charles, and B.R. Glick. 2012. Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology. 61: 217-224.

Rojas-Solís, D., E. Zetter-Salmón, M. Contreras-Pérez, M. del Carmen Rocha-Granados, L. Macías-Rodríguez, and G. Santoyo. 2018. Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatalysis and Agricultural Biotechnology. 13: 46-52.

Sainju, U.M., and S.Y. Alasinrin. 2020. Changes in soil chemical properties and crop yields with long‐term cropping system and nitrogen fertilization. Agrosystems, Geosciences & Environment. 3(1): e20019.

Santoyo, G., G. Moreno-Hagelsieb, M. del Carmen Orozco-Mosqueda, and B.R. Glick. 2016. Plant growth-promoting bacterial endophytes. Microbiological Research. 183: 92-99.

Shanmugaiah, V., N. Mathivanan, and B. Varghese. 2010. Purification, crystal structure and antimicrobial activity of phenazine‐1‐carboxamide produced by a growth‐promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. Journal of Applied Microbiology. 108(2): 703-711.

Sohn, M.J., C.J. Zheng, and W.G. Kim. 2008. Macrolactin S, a new antibacterial agent with Fab G-inhibitory activity from Bacillus sp. AT28. The Journal of Antibiotics. 61(11): 687-691.

Spaepen, S., and J. Vanderleyden. 2011. Auxin and plant-microbe interactions. Cold Spring Harbor perspectives in biology. 3(4): a001438.

Spaepen, S., J. Vanderleyden, and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews. 31(4): 425-448.

Stella, M., and M. Halimi. 2015. Gluconic acid production by bacteria to liberate phosphorus from insoluble phosphate complexes. Journal of Tropical Agriculture and Food Science. 43(1): 41-53.

Suryanto, D., S. Wahyuni, E.B.M. Siregar, and E. Munir. 2014. Utilization of chitinolytic bacterial isolates to control anthracnose of cocoa leaf caused by Colletotrichum gloeosporioides. African Journal of Biotechnology. 13(15).

Susilowati, A.R.I., A.T. Wahyudi, Y. Lestari, A. Suwanto, and S. Wiyono. 2011. Potential Pseudomonas isolated from soybean rhizosphere as biocontrol against soilborne phytopathogenic fungi. HAYATI Journal of Biosciences. 18(2): 51-56.

Velusamy, P., and K.Y. Kim. 2011. Chitinolytic activity of Enterobacter sp. KB3 antagonistic to Rhizoctonia solani and its role in the degradation of living fungal hyphae. International Research Journal of Microbiology. 2(6): 206-214.

Woźniak, M., A. Gałązka, R. Tyśkiewicz, and J. Jaroszuk-Ściseł. 2019. Endophytic bacteria potentially promote plant growth by synthesizing different metabolites and their phenotypic/physiological profiles in the biolog gen iii microplateTM test. International Journal of Molecular Sciences. 20(21): 5283.

Xu, Q., N. Ling, H. Chen, Y. Duan, S. Wang, Q. Shen, and P. Vandenkoornhuyse. 2020. Long-term chemical-only fertilization induces a diversity decline and deep selection on the soil bacteria. Msystems. 5(4): e00337-20.

Yan, X., Y.X. Zhou, X.X. Tang, X.X. Liu, Z.W. Yi, M.J. Fang, Z. Wu, F.Q. Jiang, and Y.K. Qiu. 2016. Macrolactins from marine-derived Bacillus subtilis B5 bacteria as inhibitors of inducible nitric oxide and cytokines expression. Marine Drugs. 14(11): 195.

Zeng, Q., X. Wu, and X. Wen. 2016. Identification and characterization of the rhizosphere phosphate-solubilizing bacterium Pseudomonas frederiksbergensis JW-SD2, and its plant growth-promoting effects on poplar seedlings. Annals of Microbiology. 66(4): 1343-1354.

Zhang, N., K. Wu, X. He, S.Q. Li, Z.H. Zhang, B. Shen, X.M. Yang, R.F. Zhang, Q.W. Huang, and Q.R. Shen. 2011. A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant and Soil. 344(1): 87-97.