การพ่นทางใบด้วยไคโตซานกระตุ้นการเจริญ การแตกยอด และสารเมแทบอไลท์ทุติยภูมิที่มีฤทธิ์ทางเภสัชวิทยาในพรมมิที่ปลูกด้วยระบบไฮโดรโปนิกส์

Main Article Content

อุรศรี สูยะศุนานนท์
พัทธนันท์ เขียวเขิน
เนริสา คุณประทุม

บทคัดย่อ

พรมมิ (Bacopa monnieri (L.) Wettst.) เป็นพืชสมุนไพรที่ช่วยเพิ่มความสามารถในการเรียนรู้ ความจำ และบำรุงสมอง มีสารออกฤทธิ์ทางชีวภาพที่สำคัญต่อระบบประสาท คือ สารบาโคไซด์เอ (bacoside A3, bacopaside X, bacopaside II และ bacopasaponin C) การทดลองนี้มีวัตถุประสงค์เพื่อศึกษาผลของตัวกระตุ้นไคโตซานต่อการเจริญและการสร้างสารบาโคไซด์เอ ในพรมมิที่ปลูกในระบบไฮโดรโปนิกส์แบบน้ำลึก โดยการพ่นทางใบด้วยไคโตซานที่ความเข้มข้น 0, 100, 200 และ 500 mg/l ในสัปดาห์ที่ 2-6 หลังจากการปรับสภาพ ผลการทดลองพบว่า ไคโตซานส่งเสริมการเจริญของพรมมิ เพิ่มน้ำหนักสด น้ำหนักแห้งและจำนวนยอด ไคโตซานทุกความเข้มข้นสามารถกระตุ้นการสะสมสารบาโคไซด์รวมเพิ่มมากขึ้นแตกต่างอย่างมีนัยสำคัญทางสถิติเมื่อเทียบกับชุดควบคุม การศึกษาครั้งนี้ชี้ชัดว่าไคโตซาน (200 mg/l) จัดเป็นตัวกระตุ้นที่มีความปลอดภัย มีความคุ้มทุนทางเศรษฐกิจและมีประสิทธิภาพสำหรับส่งเสริมการเจริญ เพิ่มผลผลิต รวมทั้งกระตุ้นการสร้างสารเมแทบอไลท์ทุติยภูมิหรือสารออกฤทธิ์ในพืชสมุนไพรได้ และสามารถประยุกต์ใช้สำหรับการปลูกพรมมิเพื่อประโยชน์เชิงอุตสาหกรรมผลิตภัณฑ์เสริมอาหารพรมมิ

Article Details

บท
บทความวิจัย (research article)

References

กรกนก อิงคนินันท์. 2561. พรมมิ สมุนไพรบำรุงความจำ. สำนักพิมพ์มหาวิทยาลัยนเรศวร.

นุชนาฏ ตันสุวรรณ, ศุภชัย อำคา, กนกกร สินมา และกษิดิ์เดช ธีรนิตยาธาร. 2560. ผลของไคโตซานเพื่อเพิ่มผลผลิตและปริมาณสารทุติยภูมิในข้าว. แก่นเกษตร. 45: 1322-1327.

ภคพล สุราจร, พรไพรินทร์ รุ่งเจริญทอง, กษิดิ์เดช ธีรนิตยาธาร และศุภชัย อำคา. 2560. การให้ไคโตซานเพื่อเพิ่มการเจริญเติบโต คุณภาพผลผลิต และปริมาณสารทุติยภูมิในอ้อยปลูกพันธุ์ขอนแก่น 3. แก่นเกษตร. 45: 224-229.

ยงยุทธ โอสถสภา. 2558. บทบาทของอีลิซิเตอร์ด้านสรีรวิทยาของพืช. วารสารดินและปุ๋ย. 37: 6-29.

สุชาดา บุญเลิศนิรันดร์, ระวีวรรณ สุวรรณศร, กิตติ บุญเลิศนิรันดร์ และประพฤติ พรหมสมบรูณ์. 2556. ผลของการฉีดพ่นไคโตซานต่อศักยภาพการให้ผลผลิตของข้าวภายใต้สภาพขาดน้ำที่ระยะการเจริญเติบโตแตกต่างกัน. วารสารวิชาการ มทร. สุวรรณภูมิ. 1(1): 30-40.

หมออาสา แพทย์แผนไทย. 2559. พรมมิ สุดยอดสมุนไพรไทยรักษาโรคอัลไซเมอร์และบำรุงสมองชั้นเลิศ. กรุงเทพฯ.

Abdussalam, A., and P. Ratheesh-Chandra. 2009. Bio-accumulation of heavy metals in Bacopa monnieri (L.) Pennell growing under different habitat. International Journal of Ecology and Development. 15: 66-73.

Acemi, A., B. Bayrak, M. Çakır, E. Demiryürek, E. Gün, N.E. El Gueddari, and F. Özen. 2018. Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants. In Vitro Cellular and Developmental Biology-Plant. 54: 537-544.

Al Kahtani, M.D., K.A. Attia, Y.M. Hafez, N. Khan, A.M. Eid, M.A. Ali, and A.A. Khaled Abdelaal. 2020. Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria. Agronomy. 10(8): 1180.

Benhamou, N., P. Lafontaine, and M. Nicole. 1994. Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology. 84(12): 1432-1444.

Chamnanmanoontham, N., W. Pongprayoon, R. Pichayangkura, S. Roytrakul, and S. Chadchawan. 2015. Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Plant Growth Regulation. 75: 101-114.

Chen, F., Q. Li, Y. Su, Y. Lei, and C. Zhang. 2023. Chitosan spraying enhances the growth, photosynthesis, and resistance of continuous Pinellia ternata and promotes its yield and quality. Molecules. 28: 2053.

Colman, S.L., M.F. Salcedo, A.Y. Mansilla, M.J. Iglesias, D.F. Fiol, S. Martín-Saldaña, S. Alvarez, V.A. Chevalier, A.A. Casalongué, and C. Anahí. 2019. Chitosan microparticles improve tomato seedling biomass and modulate hormonal, redox and defense pathways. Plant Physiology and Biochemistry. 143: 203-211.

Czékus, Z., N. Iqbal, B. Pollák, A. Martics, A. Ördög, and P. Poór. 2021. Role of ethylene and light in chitosan-induced local and systemic defence responses of tomato plants. Journal of Plant Physiology. 263: 153461.

Hadwiger, L.A., T. Ogawa, and H. Kuyama. 1994. Chitosan polymer sizes effective in inducing phytoalexin accumulation and fungal suppression are verified with synthesized oligomers. MPMI-Molecular Plant Microbe Interactions. 7: 531-533.

Hussain, K., A. Abdussalam, P. Ratheesh-Chandra, and Nabeesa-salim. 2010. Bioaccumulation of heavy metals in Bacopa monnieri (L.) Pennell growing under different habitat. International Journal of Ecology and Development. 15: 67-73.

Jaisi, A., and P. Panichayupakaranant. 2016. Increased production of plumbagin in Plumbago indica root cultures by biotic and abiotic elicitors. Biotechnology Letters. 38: 351-355.

Kahromi, S., and J. Khara. 2021. Chitosan stimulates secondary metabolite production and nutrient uptake in medicinal plant Dracocephalum kotschyi. Journal of the Science of Food and Agriculture. 101(9): 3898-3907.

Katiyar, D., A. Hemantaranjan, and B. Singh. 2015. Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology. 20: 1-9.

Khan, M.I.R., A. Trivellini, M. Fatma, A. Masood, A. Francini, N. Iqbal, A. Ferrante, and N.A. Khan. 2015. Role of ethylene in responses of plants to nitrogen availability. Frontiers in Plant Science. 6: 927.

Kim, H.-J., F. Chen, X. Wang, and N.C. Rajapakse. 2005. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry. 53: 3696-3701.

Largia, M.J.V., G. Pothiraj, J. Shilpha, and M. Ramesh. 2015. Methyl jasmonate and salicylic acid synergism enhances bacoside A content in shoot cultures of Bacopa monnieri (L.). Plant Cell, Tissue and Organ Culture. 122: 9-20.

Li, R., J. He, H. Xie, W. Wang, S.K. Bose, Y. Sun, J. Hu, and H. Yin. 2019. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). International Journal of Biological Macromolecules. 126: 91-100.

Li, K., R. Xing, S. Liu, and P. Li. 2020. Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. Journal of Agricultural and Food Chemistry. 68: 12203-12211.

Lucini, L., G. Baccolo, Y. Rouphael, G. Colla, L. Bavaresco, and M. Trevisan. 2018. Chitosan treatment elicited defence mechanisms, pentacyclic triterpenoids and stilbene accumulation in grape (Vitis vinifera L.) bunches. Phytochemistry. 156: 1-8.

Ma, L.J., Y.Y. Li, C.M. Yu, Y. Wang, X.M. Li, N. Li, Q. Chen, and N. Bu. 2012. Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma. 249: 393-399.

Maneeply, C., K. Sujipuli, and N. Kunpratum. 2018. Growth of Brahmi Bacopa monnieri (L.) Wettst. by NFT and DFT hydroponic systems and their accumulation of saponin bacosides. NU. International Journal of Science. 15: 114-124.

Moenne, A., and A. González. 2021. Chitosan-, alginate-carrageenan-derived oligosaccharides stimulate defense against biotic and abiotic stresses, and growth in plants: A historical perspective. Carbohydrate Research. 503: 108298.

Nag, S., and S. Kumaria. 2018. In vitro propagation of medicinally threatened orchid Vanda coerulea: An improved method for the production of phytochemicals, antioxidants and phenylalanine ammonia lyase activity. Journal of Pharmacognosy and Phytochemistry. 7(4): 2973-2982.

Nge, K.L., N. Nwe, S. Chandrkrachang, and W.F. Stevens. 2006. Chitosan as a growth stimulator in orchid tissue culture. Plant Science. 170: 1185-1190.

No, H.K., K.S. Lee, I.D. Kim, M.J. Park, S.D. Kim, and S.P. Meyers. 2003. Chitosan treatment affects yield, ascorbic acid content, and hardness of soybean sprouts. Journal of Food Science. 68: 680-685.

Parale, A., R. Barmukh, and T. Nikam. 2010. Influence of organic supplements on production of shoot and callus biomass and accumulation of bacoside in Bacopa monniera (L.) Pennell. Physiology and Molecular Biology of Plants. 16: 167-175.

Phrompittayarat, W., K. Jetiyanon, S. Wittaya-Areekul, W. Putalun, H. Tanaka, I. Khan, and K. Ingkaninan. 2011. Influence of seasons, different plant parts, and plant growth stages on saponin quantity and distribution in Bacopa monnieri. Songklanakarin Journal of Science and Technology. 33(2): 193-199.

Porra, R., W.A.A. Thompson, and P. Kriedemann. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 975: 384-394.

Ramírez-Mosqueda, M.A, and L.G. Iglesias-Andreu. 2016. Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cellular and Developmental Biology-Plant. 52: 154-160.

Reddy, B.M., J. Arul, P. Angers, and L. Couture. 1999. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. Journal of Agricultural and Food Chemistry. 47: 1208-1216.

Salimgandomi, S., and A. Shabrangi. 2016. The effect of chitosan on antioxidant activity and some secondary metabolites of Mentha piperita L. Journal of Pharmaceutical and Health Sciences. 4: 135-142.

Sathiyabama, M., G. Akila, and R.E. Charles. 2014. Chitosan-induced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Archives of Phytopathology and Plant Protection. 47: 1777-1787.

Sharma, M., A. Ahuja, R. Gupta, and S. Mallubhotla. 2015. Enhanced bacoside production in shoot cultures of Bacopa monnieri under the influence of abiotic elicitors. Natural Product Research. 29(8): 745-749.

Thakur, M., S. Bhattacharya, P.K. Khosla, and S. Puri. 2019. Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants. 12: 1-12.

Vaseva, I.I., E. Qudeimat, T. Potuschak, Y. Du, P. Genschik, F.Vandenbussche, and D. Van Der Straeten. 2018. The plant hormone ethylene restricts Arabidopsis growth via the epidermis. Proceedings of The National Academy of Sciences. 115(17): E4130–E4139.

Waewthongrak, W., and N. Saleh. 2020. Effect of chitosan on growth of seeda tomato in vegetative stage. ASEAN Journal of Scientific and Technological Reports. 23(3): 1-9.

Yin, H., X.C. Fretté, L.P. Christensen, and K. Grevsen. 2012. Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). Journal of Agricultural and Food Chemistry. 60: 136-143.

Zhang, X.K., Z.L. Tang, and L. Zhan. 2002. Influence of chitosan on induction rapeseed resistance. Agricultural Science in China. 35: 287-290.

Zhang, X., K. Li, R. Xing, S. Liu, X. Chen, H. Yang, and P. Li. 2018. miRNA and mRNA expression profiles reveal insight into chitosan-mediated regulation of plant growth. Journal of Agricultural and Food Chemistry. 66: 3810-3822.