การศึกษาความหลากหลายและความสัมพันธ์ของยีนที่มีหน้าที่เกี่ยวข้องต่อการขับเชื้อซัลโมเนลล่าในอุจจาระของสุกร

Main Article Content

ณัฐริกา สุวรรณวงศ์
อัจฉรา ธรรมรัตน์
ธัญจิรา เทพรัตน์
พิชญานิภา พงษ์พานิช

บทคัดย่อ

การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อศึกษาความหลากหลายของยีนที่มีหน้าที่เกี่ยวข้อง จำนวน 4 ยีน ประกอบด้วย Chaperonin Containing TCP1 Subunit 7 (CCT7), Alpha-1-Fucosyltransferase (FUT1), Neutrophil Cytosolic Factor 2 (NCF2) และ Tolllike receptors 4 (TLR4) และความสัมพันธ์รูปแบบจีโนไทป์กับคะแนนอุจจาระและการขับเชื้อซัลโมเนลล่าในอุจจาระสุกร การศึกษาครั้งนี้ใช้สุกรพันธุ์ลูกผสม (50% ดูร็อค x 25% ลาร์จไวท์ x 25% แลนดเรซ) ใช้สุกรหย่านมเร็วที่ช่วงอายุ 15-21 วัน จำนวน 40 ตัว ทำการป้อนเชื้อซัลโมเนลล่า (Salmonella Typhimurium) ทางปากให้กับสุกร ทำการบันทึกคะแนนอุจจาระและปริมาณเชื้อซัลโมเนลล่าในอุจจาระ ในวันที่ 2, 7, 14 และ 21 หลังได้รับเชื้อ ความหลากหลายของยีนที่มีหน้าที่เกี่ยวข้องได้รับการตรวจสอบจีโนไทป์ด้วยเทคนิค PCR-RFLP วิเคราะห์ความสัมพันธ์ระหว่างยีนที่มีหน้าที่เกี่ยวข้องกับคะแนนอุจจาระด้วยวิธี Cochran-Mantel-Haenszel test และปริมาณการขับเชื้อซัลโมเนลล่าในอุจจาระ ด้วยวิธี General linear model procedure (GLM) ผลการศึกษา พบว่า คะแนนอุจจาระในสุกรภายหลังจากได้รับเชื้อไม่มีความแตกต่างกันทางสถิติ (P>0.05) ปริมาณการขับเชื้อซัลโมเนลล่าในอุจจาระของสุกรภายหลังการได้รับเชื้อมีความแตกต่างกันทางสถิติ (P<0.05) โดยสุกรมีปริมาณการขับเชื้อซัลโมเนลล่าสูงสุดในวันที่ 7 ภายหลังการได้รับเชื้อซัลโมเนลล่า พบความหลากหลายของยีน CCT7 จำนวน 3 จีโนไทป์ ยีน FUT1 พบจำนวน 2 จีโนไทป์ ส่วนยีน NCF2 และ TLR4 ไม่พบความผันแปรทางพันธุกรรม การวิเคราะห์ความสัมพันธ์แสดงให้เห็นว่ารูปแบบจีโนไทป์ของยีน CCT7 และ FUT1 ไม่มีความสัมพันธ์ของกับคะแนนอุจจาระ แต่พบความสัมพันธ์ระหว่างรูปแบบจีโนไทป์ของยีน CCT7 กับปริมาณการขับเชื้อซัลโมเนลล่าในอุจจาระของสุกร (P<0.05)  โดยจีโนไทป์ AA มีปริมาณการขับเชื้อซัลโมเนลล่าในอุจาระสูงสุดในวันที่ 2 หลังการได้รับเชื้อ ( 3.05 x104 CFU/ml ) ดังนั้นยีน CCT7 อาจมีความเป็นไปได้ที่จะนำไปศึกษาเพื่อพัฒนาเป็นยีนเครื่องหมายช่วยในการคัดเลือกสุกรที่ต้านทานต่อการติดเชื้อซัลโมเนลล่าในสุกร

Article Details

รูปแบบการอ้างอิง
สุวรรณวงศ์ ณ. ., ธรรมรัตน์ อ. ., เทพรัตน์ ธ. ., & พงษ์พานิช พ. . (2025). การศึกษาความหลากหลายและความสัมพันธ์ของยีนที่มีหน้าที่เกี่ยวข้องต่อการขับเชื้อซัลโมเนลล่าในอุจจาระของสุกร. วารสารแก่นเกษตร, 53(3), 542–558. สืบค้น จาก https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/263177
ประเภทบทความ
บทความวิจัย (research article)

เอกสารอ้างอิง

กมล ฉวีวรรณ, ประภาส มหินชัย, ศศิพร ช่อลำไย, นฐิณี รัตนมหาวิชัย, ศุภมิตร เมฆฉาย และจันทรพร เจ้าทรัพย์. 2565. การศึกษายีนที่เกี่ยวข้องกับความต้านทานโรคของสุกรพื้นเมืองไทย. แก่นเกษตร. 1: 506-517.

กิจจา อุไรรงค์. 2535. แนวทางการวินิจฉัย รักษา และควบคุมโรคสุกร. พิมพ์ครั้งที่ 2. กรุงเทพมหานคร: โรงพิมพ์สหมิตรออฟเซต.

โชคชัย นกเทศ, สุดารัตน์ ดารงวัฒนโภคิน, วันทนีย์ เนรมิตมานสุข, ชิต ศิริวรรณ์, จิรา คงครอง, สุจิรา ปาจริยานนท์, ปฏิพร ฐาปนกุลศักดิ์, พัชรี ทองคาคูณ, เสริมพันธุ์ สุนทรชาติ, กิตติชัย อุ่นจิต และรัฐพงศ์ รัตนภุมมะ. 2554. ซัลโมเนลโลซิส. สถาบันสุขภาพสัตว์ แห่งชาติ กรมปศุสัตว์.

ณัฐริกา สุวรรณวงศ์, นเรศน์ อินทรักษ์, พีรญา ทิพย์เดช และพิชญานิภา พงษ์พานิช. 2562. ความ หลากหลายทางพันธุกรรมของยีนที่เกี่ยวข้องกับระบบภูมิค้มกันในสุกร. แก่นเกษตร. 47: 781-786.

ณัฐริกา สุวรรณวงศ์, อัจฉรา ธรรมรัตน์ และพิชญานิภา พงษ์พานิช. 2562. ความสัมพันธ์ของรูปแบบยีน CCT7 กับค่าโลหิตวิทยาในสุกรหลังหย่านม. แก่นเกษตร. 47: 437-443.

Ayres, J. S., and D. S. Schneider. 2012. Tolerance of infections. Annual Review of Immunology. 30: 271-294.

Bao, W. B., S. L. Wu, H. H. Musa, G. Q. Zhu, and G. H. Chen. 2008. Genetic variation at the alpha-1-fucosyltransferase (FUT1) gene in Asian wild boar and Chinese and Western commercial pig breeds. Journal of Animal Breeding and Genetics. 125: 427-430.

Bao, W. B., L. Ye, Z. Y. Pan, J. Zhu, G. Q. Zhu, X. G. Huang, and S. L. Wu. 2011. Analysis of polymorphisms in the porcine TLR4 gene and its expression related to Escherichia coli F18 infection. Czech Journal of Animal Science. 11: 475-482.

Bao, W. B., L. Ye, Z. Y. Pan, J. Zhu, Z. D. Du, G. Q. Zhu, X. G. Huang, and S. L. Wu. 2012. The effect of mutation at M307 in FUT1 gene on susceptibility of Escherichia coli F18 and gene expression in Sutai piglets. Molecular Biology Reports. 39: 3131-3136.

Brackley, K. I., and J. Grantham. 2009. Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperones. 14: 23-31.

Brichta-Harhay, D. M., T. M. Arthur, J. M. Bosilevac, M. N. Guerini, N. Kalchayanand, and M. Koohmaraie. 2007. Enumeration of Salmonella and Escherichia coli O157:H7 in ground beef, cattle carcass, hide and faecal samples using direct plating methods. Journal of Applied Microbiology. 103: 1657-1668.

Chang, Y. X., Y. F. Lin, C. L. Chen, M. S. Huang, M. Hsiao, and P. H. Liang. 2020. Chaperonin-Containing TCP-1 Promotes Cancer Chemoresistance and Metastasis through the AKT-GSK3β-β-Catenin and XIAP-Survivin Pathways. Cancers (Basel). 12: article ID 3865.

Clop, A., A. Huisman, P. van As, A. Sharaf, S. Derdak, and A. Sanchez. 2016. Identification of genetic variation in the swine toll-like receptors and development of a porcine TLR genotyping array. Genetics Selection Evolution. 48: article ID 28.

Cuong, N. V., N. T. Thu, T. T. Thoa, T. X. Hoan, N. T. Thuy, and N. T. D. Thuy. 2012. Polymorphisms of candidate genes associated with meat quality and disease resistance in indigenous and exotic pig breeds of Vietnam. South African Journal of Animal Science. 42: 221-231.

Goud, T. S., R. C. Upadhyay, A. Kumar, S. Karri, R. Choudhary, S. Ashraf, S. V. Singh, O. S. Kumar, and C. Kiranmai. 2018. Novel extraction of high-quality genomic DNA from frozen bovine blood samples by using detergent method. Open Veterinary Journal. 8: 415-422.

Julius, D., and A. I. Basbaum. 2001. Molecular mechanisms of nociception. Nature. 413: 203-210.

Kich, J. D., J. J. Uthe, M. V. Benavides, M. E. Cantão, R. Zanella, C. K. Tuggle, and S. M. D. Bearson. 2014. TLR4 single nucleotide polymorphisms (SNPs) associated with Salmonella shedding in pigs. Journal of Applied Genetics. 55: 267-271.

Knetter, S. M., S. M. D. Bearson, T-H. Huang, D. Kurkiewicz, M. Schroyen, D. Nettleton, D. Berman, V. Cohen, J. K. Lunney, A. E. Ramer-Tait, M. J. Wannemuehler, and C. K. Tuggle. 2015. Salmonella enterica serovar Typhimurium-infected pigs with different shedding levels exhibit distinct clinical, peripheral cytokine and transcriptomic immune response phenotypes. Innate Immunity. 21: 227-241.

Luise, D., C. Lauridsen, P. Bosi, and P. Trevisi. 2019. Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. Journal of Animal Science and Biotechnology. 10: 1-20.

Luo, Y., X. Qiu, H. Li, and Q. Zhang. 2010. Association between the polymorphism in FUT1 gene and the resistance to PWD and ED in three pig breeds. Asian-Australasian Journal of Animal Sciences. 23: 1268-1275.

Meijerink, E., R. Fries, P. Vo¨geli, J. Masabanda, G. Wigger, C. Stricker, S. Neuenschwander, H. U. Bertschinger, and G. Stranzinger. 1997. Two alpha (1,2) fucosyltransferase genes on porcine chromosome 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci. Mammalian Genome. 8: 736-741.

Oftedal, B. E., S. Maio, A. E. Handel, M. P. J. White, D. Howie, S. Davis, N. Prevot, I. A. Rota, M. E. Deadman, B. M. Kessler, R. Fischer, N. S. Trede, E. Sezgin, R. M. Maizels, and G. A. Holländer. 2021. The chaperonin CCT8 controls proteostasis essential for T cell maturation, selection, and function. Communications Biology. 4: article ID 681.

Peakall, R. O. D., and P. E. Smouse. 2012. GENALEX 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 28: 2537-2539.

Petit, G., V. Grosbois, K. Chalvet-Monfray, A. Ducos, D. Desmecht, G. P. Martineau, and A. Decors. 2020. Polymorphism of the alpha-1-fucosyltransferase (FUT1) gene in several wild boar (Sus scrofa) populations in France and link to edema disease. Research in Veterinary Science. 131: 78-86.

Phongaran, D., S. Khang-Air, and S. Angkititrakul. 2019. Molecular epidemiology and antimicrobial resistance of Salmonella isolates from broilers and pigs in Thailand. Veterinary World. 12: 1311-1318.

Poulsen, A., S. R. Luise, D. Curtasu, M. V. Sugiharto, S. Canibe, N. P. Trevisi, and C. Lauridsen. 2018. Effects of alpha‐(1,2)-fucosyl‐transferase genotype variants on plasma metabolome, immune responses and gastrointestinal bacterial enumeration of pigs pre- and post-weaning. PLoS One. 13: article ID e0202970.

Rhouma, M., J. M. Fairbrother, W. Thériault, F. Beaudry, N. Bergeron, S. L.-Lewandowski, and A. Letellier. 2017. The fecal presence of enterotoxin and F4 genes as an indicator of efficacy of treatment with colistin sulfate in pigs. BMC Microbiology. 17: article ID 6.

Sancho-Shimizu, V., and D. Malo. 2006. Sequencing, expression, and functional analyses support the candidacy of Ncf2 in susceptibility to Salmonella typhimurium infection in wild-derived mice. Journal of Immunology. 176: 6954-6961.

Schut, C. H., A. Farzan, R. S. Fraser, M. H. Ainslie-Garcia, R. M. Friendship, and B. N. Lillie. 2020. Identification of single-nucleotide variants associated with susceptibility to Salmonella in pigs using a genome-wide association approach. BMC Veterinary Research. 16: article ID 138.

Seal, S., G. Dharmarajan, and I. Khan. 2021. Evolution of pathogen tolerance and emerging infections: a missing experimental paradigm. Elife. 0: article ID e68874.

Snegin, E. A., A. A. Sychev, O. Y. Artemchuk, A. S. Barkhatov, E. A. Snegina, S. R. Yusupov, and A. Y. Yusupova. 2023. Polymorphisms associated with resistance to infectious diseases in different breeds of pigs of the Belgorod Region of Russia. E3S Web of Conferences. 390: article ID 07018.

Splichal, I., I. Rychlik, I. Splichalova, D. Karasova, and A. Splichalova. 2020. Toll-like receptor 4 signaling in the ileum and colon of gnotobiotic piglets infected with Salmonella typhimurium or its isogenic ∆rfa mutants. Toxins. 12: article ID 545.

Spiehs, M. J., G. C. Shurson, and L. J. Johnston. 2008. Effects of two direct-fed microbials on the ability of pigs to resist an infection with Salmonella enterica serovar Typhimurium. Journal of Swine Health and Production. 16: 27-36.

Spiess, C., A. S. Meyer, S. Reissmann, and J. Frydman. 2004. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends in Cell Biology. 14: 598-604.

Su, X., H. Zhou, F. Xu, J. Zhang, B. Xiao, Q. Qi, L. Lin, and B. Yang. 2024. Chaperonin TRiC/CCT subunit CCT7 is involved in the replication of canine parvovirus in F81 cells. Frontiers in Microbiology.15: article ID 1346894.

Tahmaz, I., S. S. Ghahe, and U. Topf. 2021. Prefoldin function in cellular protein homeostasis and human diseases. Frontiers in Cell and Developmental Biology. 9: article ID 816214.

Trongjit, S., S. Angkititrakul, R. E. Tuttle, J. Poungseree, P. Padungtod, and R. Chuanchuen 2017. Prevalence and antimicrobial resistance in Salmonella enterica isolated from broiler chickens, pigs and meat products in Thailand–Cambodia border provinces. Microbiology and Immunology. 61: 23-33.

Uthe, J. J., A. Royaee, J. K. Lunney, T. J. Stabel, S. H. Zhao, C. K. Tuggle, and S. M. Bearson. 2007. Porcine differential gene expression in response to Salmonella enterica serovar Choleraesuis and Typhimurium. Molecular Immunology. 44: 2900-2914.

Uthe, J. J., Y. Wang, L. Qu, D. Nettleton, C. K. Tuggle, and S. M. D. Bearson. 2009. Correlating blood immune parameters and a CCT7 genetic variant with the shedding of Salmonella enterica serovar Typhimurium in swine. Veterinary Microbiology. 135: 384-388.

Uthe, J. J., S. M. Bearson, L. Qu, J. C. Dekkers, D. Nettleton, Y. Rodriguez Torres, A. M. Connor, J. D. McKean, and C. K. Tuggle. 2011. Integrating comparative expression profiling data and association of SNPs with Salmonella shedding for improved food safety and porcine disease resistance. Animal Genetics. 42: 521-534.

Valini, G. A. C., P. R. Arnaut, L. G. Barbosa, P. H. A. de Azevedo, A. D. B. Melo, D. A. Marçal, P. H. R. F. Campos, and L. Hauschild. 2023. A simple assay to assess salmonella typhimurium impact on performance and immune status of growing pigs after different inoculation doses. Microorganisms. 11: article ID 446.

Vallin, J., and J. Grantham. 2019. The role of the molecular chaperone CCT in protein folding and mediation of cytoskeleton-associated processes: implications for cancer cell biology. Cell Stress Chaperones. 24: 17-27.

Wang, S. J., W. J. Liu, L. G. Yang, C. A. Sargent, H. B. Liu, C. Wang, X. Liu, S. Zhao, N. Affara, A. Liang, and S. J. Zhang. 2012. Effects of FUT1 gene mutation on resistance to infectious disease. Molecular Biology Reports. 39: 2805-2810.