การใช้ถ่านชีวภาพมูลแพะร่วมกับการปรับสัดส่วนคาร์บอนต่อไนโตรเจนและการใช้จุลินทรีย์เชื้อเร่งต่อสมบัติปุ๋ยหมักผักตบชวา

Main Article Content

ชาษิต กมลมานิทย์
สุกฤตยา ด่านณรงค์
ณัฏฐกิตติยา ไพบูลย์
อัจฉราวดี เครือภักดี

บทคัดย่อ

การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาการใช้ถ่านชีวภาพมูลแพะเพื่อปรับค่าอัตราส่วนคาร์บอนต่อไนโตรเจน (C/N ratio) และการใช้จุลินทรีย์เชื้อเร่ง (microbial activators, MA) 2 ชนิด คือ M1 (เชื้อจุลินทรีย์จาก พ.ด. 1) และ MA 2 (เชื้อจุลินทรีย์จาก พด 2)ที่ส่งผลต่อสมบัติบางประการของปุ๋ยหมักผักตบชวา การทดลองประกอบด้วย 6 กรรมวิธี ดังนี้ 1) สัดส่วน C/N = 30:1 2) สัดส่วน C/N = 30:1+MA1 3) สัดส่วน C/N = 30:1+MA2 4) สัดส่วน C/N = 35:1 5) สัดส่วน C/N = 35:1+MA1 และ 6) สัดส่วน C/N = 35:1+MA2 วางแผนการทดลองแบบ randomized complete block design (RCBD) จำนวน 3 ซ้ำ ผลการศึกษาแสดงให้เห็นว่าภายใน 17 วันแรกของการย่อยสลายในทุกกรรมวิธีที่ปรับค่า C/N เริ่มต้นเท่ากับ 30:1 มีอุณหภูมิเฉลี่ยระหว่างการหมักสูงกว่าทุกกรรมวิธีที่ปรับค่า C/N = 35:1 โดยเฉพาะกรรมวิธี C/N = 30:1+MA1 มีอุณหภูมิเฉลี่ยมีค่าสูงสุดเท่ากับ 52.9 ˚C และคงระยะเวลาอุณหภูมิสูง (>50 ˚C) ได้นานที่สุดเท่ากับ 7 วัน (P<0.05) ในวันที่ 56 ของการทดลองพบว่ากรรมวิธี C/N = 30:1+MA1 มีคาร์บอนอินทรีย์ลดต่ำสุดเท่ากับ 29.90 % คิดเป็นสัดส่วนคาร์บอนที่สูญเสียไปจากการย่อยสลายเท่ากับ 23.92% โดยมีค่า C/N เท่ากับ 18.7 ปริมาณไนโตรเจนทั้งหมดสูงสุดเท่ากับ 1.6% (P<0.05) มีค่า pH เท่ากับ 7.55 และความชื้นของวัสดุหมักเท่ากับ 17.55% และกิจกรรมของเอนไซม์ ß-glucosidase เท่ากับ 266.7 µg p-nitrophenol/g compost/h ในทางเพิ่มเติมกรรมวิธี C/N = 35:1+MA1 ยังมีกิจกรรมของเอนไซม์ ß-glucosidase สูงสุดเท่ากับ 266.7 µg p-nitrophenol/g compost/h (P<0.05) การศึกษานี้ชี้ให้เห็นว่าปริมาณการใช้ถ่านชีวภาพมูลแพะในวัสดุหมักเพื่อปรับค่าอัตราส่วน C/N และการเลือกใช้ชนิดของจุลินทรีย์เชื้อเร่งเป็นปัจจัยสำคัญที่ส่งผลต่อรูปแบบการย่อยสลายและผลผลิตที่ได้ของวัสดุหมักจากผักตบชวา

Article Details

รูปแบบการอ้างอิง
กมลมานิทย์ ช. ., ด่านณรงค์ ส. ., ไพบูลย์ ณ. ., & เครือภักดี อ. . (2025). การใช้ถ่านชีวภาพมูลแพะร่วมกับการปรับสัดส่วนคาร์บอนต่อไนโตรเจนและการใช้จุลินทรีย์เชื้อเร่งต่อสมบัติปุ๋ยหมักผักตบชวา. วารสารแก่นเกษตร, 53(3), 504–515. สืบค้น จาก https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/264013
ประเภทบทความ
บทความวิจัย (research article)

เอกสารอ้างอิง

กรมพัฒนาที่ดิน. 2550. การผลิตปุ๋ยหมักโดยใช้สารเร่ง ซุปเปอร์ พด.1. แหล่งข้อมูล: http://.www.ldd.go.th/menu_Dataonline/G1/G1_13.pdf. ค้นเมื่อ 1 พฤศจิกายน 2567.

กรมพัฒนาที่ดิน. ม.ป.ป. มหัศจรรย์ พด. แหล่งข้อมูล: http://www1.ldd.go.th/menu_5wonder/index.html. ค้นเมื่อ 1 กรกฎาคม 2567.

กรมวิชาการเกษตร. 2548. ประกาศกรมวิชาการเกษตร เรื่อง มาตรฐานปุ๋ยอินทรีย์ พ.ศ. 2548. ราชกิจจานุเบกษา. เล่ม 122 ตอนพิเศษ 109 ง., หน้า 9-10.

สินธนา แก้วฝ่ายนอก และภาณุเดชา กมลมานิทย์. 2562. การผลิตถ่านชีวภาพจากมูลแพะด้วยเตาแบบดั้งเดิมเพื่อการเก็บกักคาร์บอนและเพิ่มธาตุอาหารพืช. วารสารวิทยาศาสตร์เกษตร. 50: 210-216.

Ajithram, A., J. T. W. Jappes, and N. C. Brintha. 2021. Water hyacinth (Eichhornia crassipes) natural composite extraction methods and properties-a review. Materials Today: Proceedings. 45: 1626-1632.

Alef, K., and P. Nannipieri. 1995. Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London.

American Standard of Testing Material. 1990. Standard test method for chemical analysis of wood Charcoal. ASTM D 1762-84.

Brodowski, S., B. John, H. Flessa, and W. Amelung. 2006. Aggregates-occluded black carbon in soil. European Journal of Soil Science. 57: 539-546.

Brodowski, S., W. Amelung, L. Haumaier, C. Abetz, and W. Zech. 2005. Morphological and chemical properties of black carbon in physical soil factions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma. 128: 116-129.

Butnan, S., J. L. Deenik, B. Toomsan, M. J. Antal, and P. Vityakon. 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma. 237-238: 105-116.

Camps, M. 2015. The use of biochar in composting. International biochar initiative. Available: www.biochar-international.org. Accessed Jul.1, 2024.

Chan, K. Y., Z. L. Van, A. I. Meszaros, A. Downie, and S. Joseph. 2008. Agronomic values of green waste biochar as a soil amendment. Soil Research. 45: 629-634.

Cheng, C. H., J. Lehmann, and M. H. Engelhard. 2008. Natural oxidation of black carbon in soils: changes in molecular form and surface change along a climosequence. Geochimica et Cosmochimica Acta. 72: 1598-1610.

Cornell Waste Management Institute. 1996. Calculate C/N ratio for three materials. Available: https:// compost.css.cornell.edu/calc/2.html. Accessed Jul.19, 2024.

Deenik, J. L., A. Diarra, G. Uehara, S. Campbell, Y. Sumiyoshi, and M. J. Antal. 2011. Charcoal ash and volatile matter effects on soil properties and plant growth in an acid Ultisol. Soil Science. 176: 336-345.

Dias, B. O., C. A. Silva, F. S. Higashikawa, A. Roig, and M. A. Sánchez-Monedro. 2010. Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. Bioresource Technology. 101: 1239-1246.

Gaskin, J. W., C. Steiner, K. C. Harris, C. Das, and B. Bibens. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE. 51: 2061-2069.

Gaskin, J. W., R. A. Speir, K. Harris, K. C. Das, R. D. Lee, L. A. Morris, and D. S. Fisher. 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal. 102: 623-633.

Grimsby, L. K., L. Gulbrandsen, L. O. Eik, G. Msalya, and G. C. Kifaro. 2016. The prospect of biogas among small-holder dairy goat farmers in the Uluguru Mountains, Tanzania. African Journal of Food, Agriculture, Nutrition and Development. 16: 10723-10737.

Guo, M., W. Song, and J. Tian. 2020. Biochar-facilitated soil remediation: mechanisms and efficacy variations. Frontiers in Environmental Science. 8: article ID 521512.

Hadiyarto, A., D. Soetrisnanto, I. Rosyidin, and A. Fitriana. 2019. Co-digestion of bagasse and water hyacinth for biogas production with variation of C/N and activated sludge. IOP Journal of Physics: Conference Series. 1295: article ID 012050.

Haroun, M., A. Idris, and S. R. Omer. 2004. Composting of tannery sludge with chicken manure and rice bran. Suranaree Journal of Science and Technology. 11: 300-307.

Hass, A., J. M. Gonzalez, I. M. Lima, H. W. Godwin, J. J. Halvorson, and D. G. Boyer. 2012. Chicken manure biochar as liming and nutrient source for acid Appalachian soil. Journal of Environmental Quality. 41: 1096-1106.

Herath, H. M. S. K., M. Camps-Arbestain, and M. Hedley. 2013. Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma. 209: 188-197.

Hemmes, K., and W. I. Schmidt. 2009. Changes of biochar in soil. pp. 169-182. In: J. Lehmann and S. Joseph (eds). Biochar for environmental management: Science and Technology. United Kingdoms, Earthscan.

Huang, G. F., J. W. C. Wong, Q. T. Wu, and B. B. Nagar. 2004. Effect of C/N on composting of pig manure with sawdust. Waste Management and Research. 24: 805-813.

Joseph, S., C. Peacocke, J. Lehmann, and P. Munroe. 2009. Developing a biochar classification and test methods. In J. Lehmann and S. Joseph, eds. Biochar for environmental management: science and technology. London, Earthscan.

Kanouo, B. M. D., S. E. Allaire, and A. D. Munson. 2018. Quality of biochars made from eucalyptus tree bark and corncob using a pilot-scale retort kiln. Waste Biomass Valorization. 9: 899-909.

Major, J., M. Rondon, D. Molina, S. Riha, and J. Lehmann. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil. 333: 117-128.

Masiello, C. A. 2004. New directions in black carbon organic geochemistry. Marine Chemistry. 92: 201-213.

Masto, R. E., S. Kumar, T. Rout, P. Sarkar, J. George, and L. Ram. 2013. Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena. 111: 64-71.

Nakhshiniev, B., C. Perera, M. K. Biddinika, H. B. Gonzales, H. Sumida, and K. Yoshikawa. 2014. Reducing ammonia volatilization during composting of organic waste through addition of hydrothermally treated lignocellulose. International Biodeterioration and Biodegradation. 96: 58-62.

Novak, J. M., I. Lima, B. Xing, J. W. Gaskin, C. Steiner, K. C. Das, M. Ahmedna, D. Rehrah, D. W. Watts, W. J. Busscher, and S. Harry. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy Sand. Annals of Environmental Science. 3: 195-206.

Olsen, S. R., and L. E. Sommers. 1982. Phosphorus. In: A. L., Page et al., eds, Methods of soil analyses. Part 2. Chemical and microbiological properties. American Society of Agronomy and Soil Science Society of America, Madison, WI.

Puttaso, A., P. Vityakon, P. Saenjan, V. Trelo-ges, and G. Cadisch. 2011. Relationship between residue quality, decomposition patterns, and soil organic matter accumulation in a tropical sandy soil after 13 years. Nutrient Cycling in Agroecosystems. 89: 159-174.

Sarfaraz, Q., L. Silva, G. Drescher, M. Zafar, F. Severo, A. Kokkonen, G. Molin, M. Shafi, Q. Shafique, and Z. Solaiman. 2020. Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. Scientific Reports. 10: article ID 955.

Sindhu, R., P. Binod, A. Pandey, A. Madhavan, J. A. Alphonsa, N. Vivek, E. Gnansounou, E. Castro, and V. Faraco. 2017. Water hyacinth a potential source for value addition: An overview. Bioresource Technology. 230: 152-162.

Skjemstad, J. O., D. C. Reicosky, A. R. Wilts, and J. A. McGowan. 2002. Charcoal carbon in U.S. agricultural soils. Soil Science Society of America Journal. 66: 1249-1255.

Sukarni, S., Y. Zakaria, S. Sumarli, R. Wulandari, A. A. Permanasari, and M. Suhermanto. 2019. Physical and chemical properties of water hyacinth (Eichhornia crassipes) as a sustainable biofuel feedstock. IOP Conference Series: Materials and Science Engineering. 515: article ID 012070.

Torres-Climent, A., J. Martin-Mata, F. C. Marhuenda-Egea, R. Moral, X. Barber, M. D. P. Murcia, and C. Paredes. 2015. Composting of the solid phase of digestate from biogas production: Optimization of the moisture, C/N ratio, and pH conditions. Communications in Soil Science and Plant Analysis. 46: 197-207.

Trupiano, D., C. Claudia, B. Silvia, A. Carla, P. V. Francesco, L. Giuseppe, Di L. Sara, F. Francesca, T. Roberto, and S. S. Gabriella. 2017. The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance. International Journal of Agronomy. 2017: article ID 3158207.

Varanasi, J. L., S. Kumari, and D. Das. 2017. Improvement of energy recovery from water hyacinth by using integrated system. International Journal of Hydrogen Energy. 43: 1303–1318.

Walkley, A., and I. A. Black. 1934. An examination of the Degtjoreff method for determining soil organic matter and proposed modification of chromic acid titration method. Soil Science. 27: 29-38.

Zhu, Y., L. Merbold, S. Leitner, D. E. Pelster, S. A. Okoma, F. Ngetich, A. A. Onyango, P. Pellikka, and K. Butterbach-Bahl. 2020. The effects of climate on decomposition of cattle, sheep and goat manure in Kenyan tropical pastures. Plant and Soil. 451: 325-343.