Effect of drought stress and propagation methods on growth traits of robusta coffee

Main Article Content

Prakaimas Roonprapant
Cattleya Chutteang
Jiraporn Chaugool
Pornchai Paiboon
Anuruck Arunyanark

Abstract

Drought has become a serious problem for robusta coffee production. Information about the existing variability among the coffee varieties in Thailand was limited. The objectives of this study were to understand the effect of drought stress and genotypes variation on growth traits, assess the effect of propagation methods to drought tolerance, and evaluate relationships between drought tolerance and growth traits of robusta coffee. Total 6 types of robusta coffee, difference with genotypes and propagation methods (FRT141 from seedling, FRT141 from cutting, SC05 from grafting, SC05 from cutting, PP01 from grafting and PP01 from cutting), were evaluated under control and drought stress conditions. Growth traits and dry weight of coffee were measured. Drought stress significantly reduced number of leaf, leaf area, stem diameter and dry weight but significantly increased root/shoot ratio in coffee. Top grafting method between shoot of desired plant genotype onto rootstock of drought tolerant genotype can increased growth and drought tolerance of coffee. There were significant differences among genotypes for drought tolerance of robusta coffee. FRT141 from seed propagation had the highest tolerance to drought stress. The correlation coefficients between total dry weight with plant height (r = 83**), canopy width (r = 87**), leaf area (r = -72**) and root dry weight (r = 73**) were highly significant under drought stress condition. This finding suggested that these traits related to drought tolerance of robusta coffee.

Article Details

How to Cite
Roonprapant, P. ., Chutteang, C. ., Chaugool, J. ., Paiboon, P. ., & Arunyanark, A. . (2021). Effect of drought stress and propagation methods on growth traits of robusta coffee. Khon Kaen Agriculture Journal, 50(3), 794–809. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/248969
Section
บทความวิจัย (research article)

References

กรมวิชาการเกษตร. 2562. คู่มือการจัดการ: การผลิตกาแฟโรบัสต้า. สถาบันวิจัยพืชสวน กรมวิชาการเกษตร. แหล่งข้อมูล: https://www.doa.go.th/hc/chumphon/wp-content/uploads/2020/02/robusta-production.pdf. ค้นเมื่อ 9 กุมภาพันธ์ 2564.

กรมส่งเสริมการเกษตร. 2557. การเพิ่มประสิทธิภาพการผลิตกาแฟ. โรงพิมพ์ชุมนุมสหกรณ์การเกษตรแห่งประเทศไทย จำกัด, กรุงเทพฯ.

จิรา ณ หนองคาย. 2551. หลักและเทคนิคการขยายพันธุ์พืชในประเทศไทย. โอ. เอส.พริ้นติ้งเฮ้าส์, กรุงเทพฯ.

สำนักข่าวไทย. 2557. ไร่กาแฟชุมพรแล้งหนักสูญ 100 ล้านบาท หวั่นปีนี้ไม่มีขาย. แหล่งข้อมูล: http://www.mcot.net/site/content?id=532a9913be0470b5038b45f7. ค้นเมื่อ 8 มีนาคม 2560.

สำนักงานเศรษฐกิจการเกษตร. 2560. สถิติการเกษตรของประเทศไทย ปี 2560. กระทรวงเกษตรและสหกรณ์, กรุงเทพฯ.

สำนักงานเศรษฐกิจการเกษตร. 2563. ข้อมูลการผลิตสินค้าเกษตร: ตารางแสดงรายละเอียดกาแฟ. แหล่งข้อมูล: http://www.oae.go.th/assets/portals/1/fileups/prcaidata/files/coffee62.pdf. ค้นเมื่อ 9 กุมภาพันธ์ 2564.

Barrs, H.D. 1968. Determination of water deficits in plant tissues. P. 235-368. In: T.T. Kozowski. Water Deficits and Plant Growth. Academic Press, NY.

Brunner, I., C. Herzog, M.A. Dawes, M. Arend, and C. Sperisen. 2015. How tree roots respond to drought. Frontiers in Plant Science. 6: 1–16.

Chemura, A., C. Mahoya, P. Chidoko, and D. Kutywayo. 2014. Effect of soil moisture deficit stress on biomass accumulation of four coffee (Coffea arabica) varieties in Zimbabwe. ISRN Agronomy. Article ID 767312, 10 pages.

Cheserek, J.J., C.O. Omondi, and J.M. Ithiru. 2015. Screening for drought tolerance among Coffea arabica cultivars in Kenya. International Journal of Research in Agricultural Sciences. 2: 2348 – 3997.

DaMatta, F.M., and J.D.C. Ramalho. 2006. Impacts of drought and temperature stress on coffee physiology and production: A Review. Brazilian Journal of Plant Physiology. 18: 55–81.

DaMatta, F.M., C.P. Ronchi, M. Maestri, and R.S. Barros. 2010. Coffee: environment and crop physiology. P. 181-216. In: F.M. DaMatta. Ecophysiology of Tropical Tree Crops. Nova Science Publishers, NY.

DaMatta, F.M., R.T. Avila, A.A. Cardoso, S.C.V. Martins, and J.C. Ramalho. 2018. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. Journal of Agricultural and Food Chemistry. 66: 5264–5274.

Dias, P.C., W.L. Araujo, G.A.B.K. Moraes, R.S. Barros, and F.M. DaMatta. 2007. Morphological and physiological responses of two coffee progenies to soil water availability. Journal of Plant Physiology. 164: 1639–1647.

Júnior, S.A., R.S. Alexandre, E.R. Schmildt, F.L. Partelli, M.A.G Ferrão, and A.L. Mauri. 2020. Comparison between grafting and cutting as vegetative propagation methods for conilon coffee plants. Acta Scientiarum. 35: 461-469.

Kufa, T., and J. Burkhardt. 2013. Studies on root growth of Coffea arabica populations and its implication for sustainable management of natural forests. Journal of Agricultural and Crop Research. 1: 1-9.

Melke, A., and M. Fetene. 2014. Eco-physiological basis of drought stress in coffee (Coffea arabica L.) in Ethiopia. Theoretical and Experimental Plant Physiology. 26: 225-239.

Myer, R., A. Kawabata, A. Cho, and S.T. Nakamoto. 2020. Grafted coffee increases yield and survivability. HortTechnology. 30: 428-432.

Novaes, P., J.P.D. Souza, and C.H.B.A. Prado. 2011. Grafting for improving net photosynthesis of Coffea arabica in field in Southeast of Brazil. Experimental Agriculture. 47: 53-68.

Pham, T.T., B.L. Giang, N.H. Nguyen, P.N.D. Yen, V.D.M. Hoang, B.T.L. Ha, and N.T.T. Le. 2020. Combination of mycorrhizal symbiosis and root grafting effectively controls nematode in replanted coffee soil. Plants. 9: 1-11.

Pinheiro, H.A., F.M. DaMatta, A.R.M. Chaves, M.E. Loureiro, and C. Ducatti. 2005. Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Annals of Botany. 96: 101–108.

Roonprapant, P., A. Arunyanark, and C. Chutteang. 2021. Morphological and physiological responses to water deficit stress conditions of robusta coffee (Coffea canephora) genotypes in Thailand. Agriculture and Natural Resources. 55: 473–484.

Silva, P.E.M., P.C. Cavatte, L.E. Morais, E.F. Medina, and F.M. DaMatta. 2013. The functional divergence of biomass partitioning, carbon gain and water use in Coffea canephora in response to the water supply: Implications for breeding aimed at improving drought tolerance. Environmental and Experimental Botany. 87: 49–57.

Venancio, L.P., R. Filgueiras, E.C. Mantovani, C. H. Amaral, F.F. Cunha, F.C.S. Silva, D. Althoff, R.A. Santos, and P.C. Cavatte. 2020. Impact of drought associated with high temperatures on Coffea canephora plantations: a case study in Espírito Santo State, Brazil. Scientific Reports. 10: 1-20.

Wasaya, A., X. Zhang, Q. Fang, and Z. Yan. 2018. Root phenotyping for drought tolerance: A Review. Agronomy. 8: 1–19.

DaMatta. 2007. Morphological and Physiological Responses of Two Coffee Progenies to Soil Water Availability. Journal of Plant Physiology. 164: 1639–1647.

Pinheiro, H.A., F.M. DaMatta, A.R.M. Chaves, M.E. Loureiro, and C. Ducatti. 2005. Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Annals of Botany. 96: 101–108.

Silva, P.E.M., P.C. Cavatte, L.E. Morais, E.F. Medina, and F.M. DaMatta. 2013. The Functional Divergence of Biomass Partitioning, Carbon Gain and Water Use in Coffea canephora in Response to the Water Supply: Implications for Breeding Aimed at Improving Drought Tolerance. Environmental and Experimental Botany. 87: 49–57.

Wasaya, A., X. Zhang, Q. Fang, and Z. Yan. 2018. Root Phenotyping for Drought Tolerance: A Review. Agronomy. 8: 1–19.