Response of grain yield among 3 rice varieties grown at different soil Cd concentrations

Main Article Content

Kankunlanach Khampuang
Ponlayuth Sooksamiti
Somchai Lapanantnoppakun
Yutdanai Yodthongdee
Chanakan Thebault Prom-u-thai

Abstract

Consumption of Cd contaminated rice leads to the toxic on human health. This study was to evaluate the response of grain yield in different rice varieties grown under different soil cadmium concentrations. The pot experiment was arranged in 3×4 factorial in completely randomized design (CRD) with three replications. The 3 rice varieties used were Kam Hom CMU, KDML 105 and Sang Yod (Phattalung). Cadmium concentration in the soil was varied into 0 (control), 5, 100 and 200 mg Cd per kg soil. Grain yield of the three varieties was affected by soil cadmium concentration differently. In Sang Yod, grain yield increased 31.88% in 200 mg Cd per kg soil, while it was not affected by Cd concentration at 5 and 100 mg Cd per kg soil compared with the control (no Cd in the soil). In KDML 105, grain yield was not affected by Cd at 5 mg per kg soil, but it was decreased 42.08 and 84.35% when soil Cd concentration increased at 100 and 200 mg Cd per kg soil, respectively. In Kam Hom CMU, grain yield was not affected by soil cadmium concentration. This study indicated the difference responses of grain yield among the 3 rice varieties grown at different soil Cd concentration. Grain yield of Sang Yod was increased, while the reversed response was found in KDML 105 and it was not affected in Kam Hom CMU. The difference responses among these rice varieties will be useful information to further study on physiological mechanism of rice production under different soil Cd concentration as well as the accumulation of Cd in rice grain which could be also useful for the selection of rice varieties as source of genetic material in breeding program for Cd tolerance rice variety.

Article Details

How to Cite
Khampuang, K. ., Sooksamiti, P. ., Lapanantnoppakun, S. ., Yodthongdee, Y. ., & Thebault Prom-u-thai, C. . (2016). Response of grain yield among 3 rice varieties grown at different soil Cd concentrations. Khon Kaen Agriculture Journal, 44(3), 409–419. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/250416
Section
บทความวิจัย (research article)

References

กรมอุตสาหกรรมพื้นฐานและการเหมืองแร่. 2547. รายงานการปนเปื้อนของแคดเมียมในสิ่งแวดล้อม อำเภอแม่สอด จังหวัดตาก ณ เดือน พฤษภาคม 2547. แหล่งข้อมูล: http://goo.gl/uetEMd. ค้นเมื่อ 17 มีนาคม 2015.
ธนภัทร ปลื้มพวก, ธงชัย มาลา และอรุณศิริ กำลัง. 2557. ปริมาณแคดเมียมในข้าวที่ปลูกในดินนาปนเปื้อนแคดเมียมในพื้นที่ลุ่มน้ำแม่ตาว จังหวัดตาก ประเทศไทย. วิทยาศาสตร์และเทคโนโลยี. 3: 26-38.
สรัตนา เสนาะ. 2548. การดูดดึงโลหะหนักของหญ้าแฝก ทานตะวัน และข้าว ที่ปลูกในดินปนเปื้อนสังกะสี แคดเมียม และ ตะกั่ว. วิทยานิพนธ์ปริญญาโท. มหาวิทยาลัยเกษตรศาสตร์.
Dong, J., F. Wu, and G. Zhang. 2006. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere. 64: 1659-1666.
Fahad, S., S.D. Hussain, S. Saud, S. Hassan, D.R. Shan, Y.T. Chen, N.Y. Deng, F.H. Khan, C. Wu, W. Wu, F.R. Shah, B.S. Ullah, M.M. Yousaf, S. Ali, and J.L. Huang. 2015. Grain cadmium and zinc concentrations in maize influenced by genotypic variations and zinc fertilization. Clean - Soil Air Water. 43: 1433-1440.
Gao, X.P., R.M. Mohr, D.L. Mclaren, and C.A. Grant. 2011. Grain cadmium and zinc concentrations in wheat as affected by genotypic variation and potassium chloride fertilization. Field Crop Res. 122: 95-103.
Ha, S.B., A.P. Smith, R. Howden, W. M. Dietrich, S. Bugg, M. J. O’Connell, P. B. Goldsbrough, and C. S. Cobbetta. 1999. Phytochelatin Synthase Genes from Arabidopsis and the Yeast Schizosaccharomyces pombe. Plant Cell. 11: 1153-1163.
Li, Y.M., L.R. Channey, and A.A. Schneiter. 1995. Genotypic variation in kernel cadmium concentration in sunflower germplasm under varying soil conditions. Crop Sci. 35: 137-141.
Sriprachote, A., P. Kanyawongha, G. Pantuwan, K. Ochiai, and T. Matoh. 2012. Evaluation of thai rice cultivars with low-grain cadmium. Soil Sci. Plant Nutr. 58: 568-572.
Tiryakioglu, M., M. Eker, F. Ozkutlu, S Husted, and I. Cakmak. 2006. Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol. 20: 181-189.
Wu, F., J. Dong, G. Jia, S. Zheng, and G. Zhang. 2006. Genotypic difference in the responses of seedling growth and Cd toxicity in rice (Oryza sativa L.). Agr Sci. China. 5: 68-76.
Yanagisawa, M., Y. Shinmura, N. Yamada, A. Segawa, and K. Kida. 1984. Heavy metal pollution and methods of restoration of polluted soil in the Jinzu River basin. Bull. Toyama Agric. Exp. Stn. 15: 1-110.