Effect of sugarcane straw management on germination and tillering of ratoon cane
Main Article Content
Abstract
At sugarcane harvesting, burning is a common practice in order to reduce time and labor. However, this practice is source of particulate matter resulting in air pollution, moisture loss, destroy microorganisms and poor soil fertility, affecting the ratoon germination and growth of ratoon cane. Therefore, the aim of this study was to determine the appropriate management of sugarcane straw for germination and tillering of ratoon cane. A field experiment was conducted at farmer’s field, Ban Phai District, Khon Kaen province. The experimental design was randomized complete block design (RCBD) with 4 replications and 3 treatments i.e., 1) burn, 2) mulch and 3) mulch + LDD1. Ratoon germination was recorded at 2 months after sugarcane straw management (MAS), stalk height, stalk diameter, SPAD reading and stalk numbers per hill were recorded at 4, 6, 8 and 10 MAS. Moreover, single stalk weight was recorded at 10 MAS. The results revealed that the burn treatment had the highest number of tillers per hill at 2 MAS (P<0.01). Stalk height, stalk diameter and SPAD reading were not statistically different among treatments throughout the experiment. Besides, the burn treatment provided the highest stalk number per hill compared to the other treatment at 4 MAS (P<0.01). On the other hand, the mulch + LDD1 treatment presented the highest stalk number per hill at 6, 8 and 10 MAS leading to the highest single stalk weight than other treatments (P<0.05). Hence, the burn treatment was practiced to high germination of ratoon. However when sugarcane developed to stalk elongation phase, the mulch + LDD1 revealed the highest stalk number per hill. Thus, sugarcane straw management by mulch + LDD1 at harvest enhanced the growth and yield of ratoon cane.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กรมพัฒนาที่ดิน. 2556. มหัศจรรย์ พด. กรมพัฒนาที่ดิน กระทรวงเกษตรและสหกรณ์. แหล่งข้อมูล: http://www.ldd.go.th/menu_5wonder/index.html. ค้นเมื่อ 14 ธันวาคม 2562.
ละอองดาว แสงหล้า และธวัชชัย ศุภดิษฐ์. 2548. ผลกระทบจากการเผาใบอ้อยและแนวทางการแก้ไข. แหล่งข้อมูล: http://naduang.loei.doae.go.th/Imager1/032556/do2.pdf. ค้นเมื่อ 16 มกราคม 2565.
วรรณวิภา แก้วประดิษฐ์. 2021. การจัดการใบอ้อยเพื่อลดฝุ่นละอองขนาดเล็กและส่งเสริมการผลิตอ้อยอย่างยั่งยืน. แก่นเกษตร. 49(1): 76-86.
วิชญ์ภาส อีสา และวรรณวิภา แก้วประดิษฐ์. 2563. การเปลี่ยนแปลงอินทรีย์คาร์บอนของดินส่วนที่เปลี่ยนแปลงได้ง่ายหลังได้รับการเก็บเกี่ยวอ้อยแบบไม่เผาใบ ภายใต้สภาพดินเหนียวที่ได้รับการเผาใบอย่างเนื่อง. วารสารเกษตรพระวรุณ. 17(1): 21-32.
สำนักงานคณะกรรมการอ้อยและน้ำตาลทราย. 2563. พื้นที่การปลูกอ้อย ปีการผลิต 2562/2563. แหล่งข้อมูล: http: //www.ocsb.go.th/th/home/index.php. ค้นเมื่อ 5 มีนาคม 2565.
สำนักงานเศรษฐกิจการเกษตร. 2564. รายละเอียดภาวะเศรษฐกิจการเกษตร. แหล่งข้อมูล:
https://www.oae.go.th/assets/portals/1/fileups/bappdata/files/Outlook%202564%20_2565%20(Final).pdf. ค้นเมื่อ 24 มกราคม 2565.
Bordonal, R.O., J.L.N. Carvalho, R. Lai, E.B. Figueiredo, B.G. Oliveira, and N.L.S Jr. 2018. Sustainability of sugarcane production in Brazil. A review. Agronomy for Sustainable Development. 38: 13.
Butphu, S., F. Rasche, G. Cadisch, and W. Kaewpradit. 2020. Eucalyptus biochar application enhances Ca
uptake of upland rice, soil available P, exchangeable K, yield, and N use efficiency of sugarcane in a crop rotation system. Journal of Plant Nutrition and Soil Science. 183: 58-68.
Cherubin, M.R., R.O. Bordonal, G.A. Castioni, E.M. Guimarães, I.P. Lisboa, L.A.A. Moraes, L.M.S Menandro, S. Tenelli, C.E.P. Cerri, D.L. Karlen, and J.L.N. Carvalho. 2021. Soil health response to sugarcane straw removal in Brazil. Industrial Crops and Products. 163: 1-12.
de Oliveira, A.P.P., P.J. Thorburn, J.S. Biggs, E. Lima, L.H.C.D. Anjos, M.G. Pereira, and N.É. Zanotti. 2016. The response of sugarcane to trash retention and nitrogen in the Brazilian coastal tablelands: a simulation study. Experimental Agriculture. 52(1): 69-86.
Dietrich, G., M. Sauvadet, S. Recous, M. Redin, I.C. Pfeifer, C.M. Garlet, H. Bazzo, and S.J. Giacomini. 2017.
Sugarcane mulch C and N dynamics during decomposition under different rates of trash removal. Agriculture, Ecosystems and Environment. 243: 123-131.
Fortes, C., P.O.C. Trivelin, and A.C. Vitti. 2012. Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil. Biomass and Bioenergy. 42: 189-198.
Hemwong, S., B. Toomsan, G. Cadisch, V. Limpinuntana, P. Vityakon, and A. Patanothai. 2009. Sugarcane
residue management and grain legume crop effects on N dynamics, N losses and growth of sugarcane. Nutrient Cycling in Agroecosystems. 83: 135-151.
Hemwong, S., G. Cadish, B. Toomsan, V. Limpinuntana, P. Vityakon, and A. Patanothai. 2008. Dynamics
of residue decomposition and N2 fixation of legumes upon sugarcane stover retention as an alternative to burning. Soil and Tillage Research. 99: 84-97.
Meier, E.A., and P.J. Thorburn. 2016. Long term sugarcane crop residue retention offers limited potential to reduce nitrogen fertilizer rates in Australian wet tropical environments. Frontiers in Plant Science. 7: 1-14.
Meier, E.A., P.J. Thorburn, M.K. Wegener, and K.E. Basford. 2006. The availability of nitrogen from
sugarcane trash on contrasting soil in the wet tropics of North Queensland. Nutrient Cycling in Agroecosystems. 75: 101-114.
Oliveira, M.W., P.C.O. Trivelin, G. Kingston, M.H.P. Barbosa, and A.C. Vitti. 2002. Decomposition and release of nutrients from sugarcane trash in two agriculture environment in Brazil. P. 1-10. In: conference of the Australian society of sugarcane technologists. Cairn.
Phukongchai, W., W. Kaewpradit, and F. Rasche. 2022. Inoculation of cellulolytic and ligninolytic microorganisms accelerates decomposition of high C/N and cellulose rich sugarcane straw in tropical sandy soils. Applied Soil Ecology. 172: 104355.
Prammanee, P. 2001. Fertilizer usage and soil management in sugarcane field. Bangkok: Department of Agriculture, Ministry of Agriculture and Co-operatives. (in Thai).
Russell, J.D., A.R. Fraser, J.R. Watson, and J.W. Parsons. 1974. Thermal decomposition of protein in soil
organic matter. Geoderma. 11: 63-66.
Schloter, M., O. Dilly, and J.C. Munch. 2003. Indicators for evaluating soil quality. Agriculture Ecosystem and Environment. 98: 255-262.
Souza, R.A., T.S. Telles, W. Machado, M. Hungri, J.T. Filho, and M.F. Guimaraes. 2012. Effect of sugarcane harvesting with burning on the chemical and microbiological properties of the soil. Agriculture, Ecosystems and Environment. 155: 1-6.
Surendran, U., V. Ramesh, M. Jayakumar, S. Marimuthu, and G. Sridevi. 2016. Improved sugarcane productivity with tillage and trash management practices in semi arid tropical agro ecosystem in India. Soil and Tillage Research. 158: 10-21.
Thawaro, N., B. Toomsan, and W. Kaewpradit. 2017. Sweet sorghum and upland rice: alternative
preceding crops to ameliorate ethanol production and soil sustainability within the sugarcane cropping system. Sugar Tech. 19(1): 64-71.
Yadav, R.L., S.K. Shukla, A. Suman, and P.N. Singh. 2009. Trichoderma inoculation and trash management effects on soil microbial biomass, soil respiration, nutrient uptake and yield of ratoon sugarcane under subtropical conditions. Biology and Fertility of Soils. 45: 461-468.