Influence of ZnO-NPs foliar application on soil microbial activities in sunflower fields treated with chemical fertilizers compared with organic materials

Main Article Content

Bhanudacha Kamolmanit
Natthakittiya Paiboon
Siwaporn Paengkom

Abstract

The objective of this research was to study the influence of organic materials and impact of ZnO-NPs on microbial activity concerning soil organic carbon turnover in soil. The experiment was divided into 6 treatments as following: 1) chemical fertilizer (CF) (N-P-K) 2) CF + ZnO-NPs 3) goat manure (GM) 4) GM + ZnO-NPs 5) GM-biochar compost and 6) GM-biochar compost + ZnO-NPs. The study found that chemical fertilizer with and without ZnO-NPs treatments resulted in increased CO2 emissions within 7 days after the application (13.3 and 12.4 mg CO2-C/m2/day) compared to day 0 (5.1 and 6 mg CO2-C/m2/day) in which the average soil organic carbon reduction (with and without ZnO-NPs) was 13.6%, indicating the degradation of indigenous soil carbon deposits. The GM and GM + ZnO-NPs treatments decreased soil CO2 emissions at the first 7 days after the application (22.5 and 24 mg CO2-C/m2/day) compared to day 0 (39.6 and 37.5 mg CO2-C/m2/day). Treatment GM + ZnO-NPs resulted in lower CO2 emissions than without foliar at days 21 and 63 after application (-19.7 and -23.8%, respectively) (P<0.001). Meanwhile, the GM-biochar compost and GM-biochar compost + ZnO-NPs decreased CO2 emissions for almost a period. The metabolic quotient (qCO2) at day 0 under GM and GM-biochar compost treatments (with and without ZnO-NPs) (0.27-0.48 mg CO2-C/g MBC/d) was significantly higher than that of the CF treatments (with and without ZnO-NPs) (0.06-0.08 mg CO2-C /g MBC/d) (P<0.001), indicating that the microorganisms have a higher potential to utilize carbon from organic material as an energy source than its accumulation within the microbial biomass. At day 49 and day 63, the GM-biochar compost treated treatments (with and without ZnO-NPs) had lower qCO2 than other treatments (0.05-0.07 mg CO2-C/g MBC/d) (P<0.05) corresponding to a high phenol oxidase activity during that period (6.3-7.56 µmol dicq/g soil/h), 

Article Details

How to Cite
Kamolmanit, B. ., Paiboon, N. ., & Paengkom, S. . (2023). Influence of ZnO-NPs foliar application on soil microbial activities in sunflower fields treated with chemical fertilizers compared with organic materials . Khon Kaen Agriculture Journal, 51(4), 648–661. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/256592
Section
บทความวิจัย (research article)

References

ณัฐพงษ์ พานวงษ์ และภาณุเดชา กมลมานิทย์. 2562. การประเมินคุณภาพและความสมบูรณ์ของปุ๋ยหมักถ่านชีวภาพจากรูปแบบกิจกรรมของเอนไซม์หมุนเวียนคาร์บอนและการปลดปล่อย CO2-C. แก่นเกษตร. 47: 199-210.

ภาณุเดชา กมลมานิทย์ และพฤกษา หล้าวงษา. 2564. อิทธิพลของปุ๋ยหมักถ่านชีวภาพมูลแพะต่อการสะสมคาร์บอนอินทรีย์ในดินและการสร้างเม็ดดิน. แก่นเกษตร. 49: 1194-1204.

ภาณุเดชา กมลมานิทย์ และศิวพร แพงคำ. 2562. อิทธิพลของการใช้ที่ดินต่างกันต่อการสะสมอินทรีย์คาร์บอนในดินร่วนปนทราย. แก่นเกษตร. 47: 1037-1044.

ภาณุเดชา กมลมานิทย์, ณัฐพงษ์ พานวงษ์ และพฤกษา หล้าวงษา. 2561. อิทธิพลของอัตราส่วนถ่านชีวภาพต่อฟางข้าวร่วมกับมูลแพะต่อคุณสมบัติทางกายภาพ เคมี และชีววิทยาของปุ๋ยหมัก. แก่นเกษตร. 46: 843-856.

สำนักงานนวัตกรรมแห่งชาติ. 2564. ซิงค์ออกไซด์นาโนจากเถ้าสังกะสีเหลือใช้สำหรับการเกษตร. แหล่งข้อมูล: https://open.nia.or. th/zno-nps. ค้นเมื่อ 1 มีนาคม 2566.

Adams, L. K., D. Y. Lyon, and P. J. J. Alvarez. 2006. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research. 40: 3527-3532.

Alef, K., and P. Nannipieri. 1995. Methods in applied soil microbiology and biochemistry: enzyme activities. 452 Academic Press, London.

Allam, M., E. Radicetti, V. Quintarelli, V. Petroselli, S. Marinari, and R. Mancinelli. 2022. Influence of organic and mineral fertilizers on soil organic carbon and crop productivity under different tillage systems: A meta-analysis. Agriculture. 12(464): doi.org/10.3390/agriculture12040464.

Amato, M., and J. N. Ladd. 1988. Assay for microbial biomass based on ninhydrin reactive nitrogen in extracts of fumigated soil. Soil Biology and Biochemistry. 20: 107-114.

American Standard of Testing Material. 1990. Standard Test Method for Chemical Analysis of Wood Charcoal ASTM D 1762-84.

Anderson, T. H., and K. H. Domsch. 1993. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry. 25: 393-395.

Boxall, A. B. A., Q. Chaudhry, C. Sinclair, A. Jones, R. Aitken, B. Jefferson, and C. Watts. 2007. Current and future predicted environmental exposure to engineered nanoparticles. Report by the Central Science Laboratory (CSL) York for the Department of the Environment and Rural Affairs (DEFRA), United Kingdom.

Buschiazzo, D. E., G. G. Havis, E. N. Hepper, A. M. Urioste, and E. L. Anton. 2002. Organic matter accumulation in soil of the semiarid Pampa of Argentina. In: Transactions of the 17th World Congress of Soil Science, Symposium no. 20, 14-21 August 2002, Thailand.

Available: https://www.semanticscholar.org/paper/ Organic-matter-accumulation-in-soils-of-the-Pampa-BUSCHIAZZOD/6b032410f45d69e5e45ec87ddc7 bde482918e638. Accessed Jun. 19, 2023.

Carreiro, M. M., R. L. Sinsabaugh, D. A. Repert, and D. F. Parkhurst. 2000. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology. 81: 2359-2365.

Chivenge, P. P., H. K. Murwira, K. E. Giller, P. Mapfumo, and J. Six. 2007. Long-term of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil and Tillage Research. 94: 328-337.

Elumalai, K., S. Velmurugan, S. Ravi, V. Kathiravan, and S. Ashokkumar. 2015. Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy. 143: 158-164.

Fu, S. F., J. Y. Wei, H. W. Chen, Y. Y. Liu, H. Y. Lu, and J. Y. Chou. 2015. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signaling and Behavior. 10(8): e1048052.

Gunamantha, I. M., and G. A. B. Widana. 2018. Characterization the potential of biochar from cow and pig manure for geoecology application. IOP Conference Series: Earth and Environmental Science. 131(012055): doi: 10.1088/1755-1315/131/1/012055.

Heer, A. S. K. 2017. Spectral characterization and anti-fungal actility of zinc oxide (ZnO) nanoparticles synthezied using Cynodon dactylon leaf extract. World Journal of Phamaceutical Research. 6: 1587-1596.

Hendel, B., R. L. Sinsabaugh, and J. Marxsen. 2005. Lignin-degrading enzymes : phenoloxidase and peroxidase. In Graca, M. A. S., F. Barlocher and M. O. Gessner, eds. Methods to study litter decomposition: a practical guide. Dordrecht: Springer.

Hijbeek, R., M. P. van Loon, and M. K. van Ittersum. 2019. Fertiliser use and soil carbon sequestration: Opportunities and trade-offs. CCAFS Working Paper no. 264. CGIAR Research Program on Climate Change, Agriculture and Food Security. Wageningen, Netherlands.

Hobbie, S. E., W. C. Eddy, C. R. Buyarski, E. C. Adair, M. L. Ogdahl, and P. Weisenhorn. 2012. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecological Monographs. 82: 389-405.

Ippolito, J. A., L. Cui, C. Kammann, N. Wrage-Monnig, J. M. Estavillo, T. Fuertes-Mendizabal, M. Cayuela, G. C. Sigua, J. M. Novak, K. A. Spokas, and N. Borchard. 2020. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar. 2: 421-438.

Joseph, S., P. Taylor, F. Rezende, K. Draper, and A. Cowie. 2019. The properties of fresh and aged biochar. Available: https://biochar.international/guides/properties-fresh-aged-biochar. Accessed Mar. 29, 2022.

Kamolmanit, B., P. Lawongsa, and M. Nopparatmaitree. 2019. Pattern changes of carbon-cycling enzyme activities as influenced by different C and N availability of organic materials. Khon Kaen Agriculture Journal. 47: 1301-1314.

Kamolmanit, B., P. Vityakon, W. Kaewpradit, G. Cadish, and F. Rasche. 2013. Soil fungal communities and enzyme activities in a sandy, highly weathered tropical soil treated with biochemically contrasting organic inputs. Biology and Fertility of Soils. 49: 905-917.

Kanouo, B. M. D., S. E. Allaire, and A. D. Munson. 2018. Quality of biochars made from eucalyptus tree bark and corncob using a pilot-scale retort kiln. Waste Biomass Valori. 9: 899-909.

Kim, S., J. Kim, and I. Lee. 2011. Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chemistry and Ecology. 27: 49-55.

Kumar, S., S. Chaudhuri, and S. K. Maiti. 2013. Soil dehydrogenase enzyme activity in natural and mine soil - a review. Middle-East Journal of Scientific Research. 13: 898-906.

Kuzyakov, Y. 2010. Priming effects: interaction between living and dead organic matter. Soil Biology and Biochemistry. 42: 1363-1371.

Kuzyakov, Y., J. K. Friedel, and K. Stahr. 2000. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry. 32: 1485-1498.

Lehmann, J., M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday, and D. Crowley. 2011. Biochar effects on soil biota-A review. Soil Biology and Biochemistry. 43: 1812-1836.

Li, W., J. Wang, X. Li, S. Wang, W. Liu, S. Shi, and W. Cao. 2019. Nitrogen fertilizer regulates soil respiration by altering the organic carbon storage in root and topsoil in alpine meadow of the north-eastern Qinghai-Tibet Plateau. Scientific Reports. 9(13735): doi.org/10.1038/s41598-019-50142-y.

Lu, H., M. S. Lashari, X. Liu, H. Ji, L. Li, J. Zheng, G. W. Kibue, S. Joseph, and G. Pan. 2015. Changes in soil microbial community structure and enzyme activitywith amendment of biochar-manure compost and pyroligneoussolution in a saline soil from Central China. European Journal of Soil Biology. 70: 67-76.

Mao, R., D. H. Zeng, L. J. Li, and Y. L. Hu. 2012. Changes in labile soil organic matter fractions following land use change from monocropping to poplar-based agroforestry systems in a semiarid region of Northeast China. Environmental Monitoring and Assessment. 184: 6845-6853.

Meenakshi, G., K. Raja, J. Renugadevi, and M. Karthikeyan. 2020. Inorganic metal oxide nanoparticles seed invigouration for extended storability of sunflower (Helianthus annus) under ambient environment. Journal of Pharmacognosy and Phytochemistry. 9: 1302-1306.

Oladele, S. O., and A. T. Adetunjic. 2021. Agro-residue biochar and N fertilizer addition mitigates CO2-C emission and stabilized soil organic carbon pools in a rain-fed agricultural cropland. International Soil and Water Conservation Research. 9: 76-86.

Olsen, S. R., and L. E. Sommers. 1982. Phosphorus. In: A. L., Page et al., eds, Methods of soil analyses. Part 2. Chemical and microbiological properties. ASA and SSSA, Madison, WI.

Pang, L., K. Xu, L. Qi, E. Chatzisymeon, X. Liu, and P. Yang. 2022. Response behavior of antibiotic resistance genes to zinc oxide nanoparticles in cattle manure thermophilic anaerobic digestion process: A metagenomic analysis. Bioresource Technology. 347(126709): doi: 10.1016/j.biortech.2022.126709.

Rajiv, P, S. Rajeshwari, and R. Venckatesh. 2013. Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy. 12: 384–387.

Raliya, R., and J. C. Tarafdar. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorus-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research. 2: 48-57.

Rasche, F., and G. Cadisch. 2013. The molecular microbial perspective of organic matter turnover and nutrient cycling in tropical agroecosystems – What do we know? Biology and Fertility of Soils. 49: 251-262.

Read, D. S., M. Matzke, H. S. Gweon, L. Newbold, L. Heggelund, M. D. Ortiz, E. Lahive, D. Spurgeon, and C. Svendsen. 2016. Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities. Environmental Science and Pollution Research. 23: 4120-4128.

Rowell, D. L. 1997. Soil Science: methods and application. John Wiley & Sons, Inc. New York.

Ruangthep, P., S. Samart, and S. Chutipaijit. 2018. ZnO nanoparticles affect differently the morphological and physiological responses of Riceberry plants (Oryza sativa L.). SNRU Journal of Science and Technology. 10: 75-81.

Sarfaraz, Q., L. Silva, G. Drescher, M. Zafar, F. Severo, A. Kokkonen, G. Molin, M. Shafi, Q. Shafique, and Z. Solaiman. 2020. Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. Scientific Reports. 10(955): doi.org/10.1038/s41598-020-57987-8.

Shi, P., and R. Schulin. 2019. Effects of soil organic residue amendment on losses of dissolved organic carbon, P, Cu and Zn via surface runoff from arable soils. Soil and Tillage Research. doi.org/10.1016/j.still.2019.104352.

Singh, N. B., N. Amist, K. Yadav, D. Singh, J. K. Pandey, and S. C. Singh. 2013. Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Journal of Nanoengineering and Nanomanufacturing. 3: 353-364.

Singh, S. V., S. Chaturvedi, V. C. Dhyani, and G. Kasivelu. 2020. Pyrolysis temperature influences the characteristics of rice straw and husk biochar and sorption/desorption behaviour of their biourea composite. Bioresource Technology. 314(123674): doi.org/10.1016/j.biortech.2020.123674.

Sirelkhatim, A., S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad. 2015. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters. 7: 219–242.

Song, W., and M. Guo. 2012. Quality variations of poultry litter biochars generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis. 94: 138-145.

Sparling, G. P., and A. W. West. 1988. A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labeled cells. Soil Biology and Biochemistry. 20: 337-343.

Srivastav, A. K., M. Kumar, N. G. Ansari, A. K. Jain, J. Shankar, N. Arjaria, P. Jagdale, and D. Singh. 2016.

A comprehensive toxicity study of zinc oxide nanoparticles versus their bulk in Wistar rats: Toxicity study of zinc oxide nanoparticles. Human and Experimental Toxicology. 35: 1286-1304.

Thirukkumaran, C. M., and D. Parkinson. 2000. Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biology and Biochemistry. 32: 59-66.