Gas chromatography mass spectrometry (GC-MS) data detect on metabolites in chilli seedlings induced by Bacillus subtilis B01
Main Article Content
Abstract
Secondary metabolites data of genus Bacillus induced plant can support the evidence of plant response to the biological control agent for plant disease management. In this study, Bacillus subtilis isolates B01 were identified by VITEK-2 system with BCL card and a good identity level at 91% probability. The causal of anthracnose fungi, Colletotrichum truncatum and C. gloeosporioides were tested by dual culture method. The result showed fungal inhibition at 69.71% and 60%. B. subtilis gave the higher seed germination rate with 90%, while 84% in nontreated chilli seeds. During the stage of true leaves at 16 days-old chilli seedlings, height and root length were longer than the control. Consequently, the result leads to the seed vigor index of bacterial treated was higher than the control (690.58 and 514.42 respectively). The induction result of secondary metabolite chilli after seed soaking with B. subtilis isolate B01 at 16 days-old was analyzed by Gas chromatography-mass spectrometry (GC-MS). The compound fragment and mass were compared with data from the National Institute of Standards and Technology database. The compound information was referred from PubChem database. The induced secondary metabolites from chilli seedlings were compared to the control. The result showed that the cell and microorganism growth inhibited substances were 1H-Imidazole, 4-methyl-; 6-Ethoxy-1,2,3,4-tetrahydro-2,2,4- trimethylquinoline; Cyclodecanamine; Heneicosane and Eicosane, 1-iodo-. Furthermore, the secondary metabolites related to growth-promoting and volatile oil-forming groups were Hexadecane; Piperidine, 2-propyl-; Undecane 3,8-dimethyl-; 2-Bromo dodecane and Nonane, 2,2,4,4,6,8,8-heptamethyl-. Lastly, we can observe an essentially industrial bioactive compound as Iron pentacarbonyl.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กัญญาณัฐ คูณค้ำ, ชัยณรงค์ รัตนกรีฑากุล และรัติยา พงศ์พิสุทธา. 2565. การตรวจสอบเอนไซม์และสภาพความคงทนของเชื้อ Bacillus spp. ที่คัดเลือกสำหรับการผลิตพริก. น. 67 - 76. ใน: ประชุมวิชาการของมหาวิทยาลัยเกษตรศาสตร์ ครั้งที่ 60. วันที่ 21 – 23 กุมภาพันธ์ 2565. มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพ.
รัติยา พงศ์พิสุทธา, วรานันท์ วิญญรัตน์, โชติรส รอดเกตุ และเทพพนม แสงเพลิง. 2553. ความแปรผันทางสัณฐานวิทยาของเชื้อรา Colletotrichum spp. สาเหตุโรคแอนแทรคโนสพริก. วารสารวิทยาศาสตร์เกษตร. 41(1): 318–321.
สำนักงานเศรษฐกิจการเกษตร. 2565. พริก. แหล่งข้อมูล: http://www.agriman.doae.go.th/home/news/2565/22chili.pdf. ค้นเมื่อ 20 ตุลาคม 2565.
Abdul-Baki, A.A., and J.D. Anderson. 1973. Vigour determination in soybean seed by multiple criteria. Crop science. 13: 630–633.
Ashwini, N., and S. Srividya. 2014. Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech. 4: 127–136.
Bbaszczyk, A., A. Augustyniak, and J. Skolimowski. 2013. Ethoxyquin: an antioxidant used in animal feed. International Journal of Food Science. 2013: 1–12.
Begum, I., F. R. Mohankumar, and K. Ramani. 2016. GC–MS analysis of bio-active molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian Journal of Microbiology. 56(4): 426–432.
Biomerieux. 2013. BioMérieux announces U.S. FDA clearance for vitek® MS, a revolutionary technology which reduces microbial identification from days to minutes reinforcing medical value of diagnostics. https://www.biomerieux.com/en/biomerieux-announces-us-fda-clearance-vitekr-ms-revolutionary-technology-which-reduces-microbial. Accessed Oct. 15, 2022.
Biomerieux. 2019. Vitek® MS: Healthcare. /https://www.biomerieus-usa.com/clinical/vitek-ms-healthcare.
Chayabutra, C., and L. K. Ju. 1999. Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and aerobic denitrifying conditions. Applied and Environment Microbiology. 66(2): 493–498.
Cui, S., E. A. A. Inocente, N. Acosta, H. M. Keener, H. Zhu, and P. P. Ling. 2019. Development of fast e-nose system for early-stage diagnosis of aphid-stressed tomato plants. Sensors. 19(16): 3480.
El-Beltagi, H. S., and M. H. Badawi. 2013. Comparison of antioxidant and antimicrobial properties for Ginkgo Biloba and rosemary (Rosmarinus Officinalis L.) from Egypt. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 41 (1): 126–135.
Elshkh, A. S. A., S.I. Anjum, W. Qiu, A. A. Almonefy, W. Li, Z. Yang, Z. Q. Cui, B. Li, G. Sun, and G. L. Xie. 2016. Controlling and defense-related mechanism of Bacillus subtilis strains against bacterial leaf blight of rice. Journal of Phytopathology. 164: 534–546.
Garruti, D. S., N. O. F. Pinto, V. C. C. Alves, M. F. A. PENHA, E. C. Tobaruela, and I. M. S. Araujo. 2013. Volatile profile and sensory quality of new varieties of Capsicum chinense pepper. Food science and Technology (Campinas). 33(1): 102–108.
Halket, G., A. E. Dinsdale, and N. A. Logan. 2009. Evaluated of the VITEK2 BCL card for identification of Bacillus species and other aerobic endospore formers. Letters in Applied Microbiology. 50: 120–126.
Han, T., C. You, L. M. Zhang, C. Feng, C. C. Zhang, J. Wang, and F. Y. Kong. 2015. Biocontrol potential of antagonist Bacillus subtilis Tpb55 against tobacco black shank. Biological Control. doi.org/10.1007/s10526-015-9705-0.
Hashem, A., B. Tabassum, and E. F. A. Allah. 2019. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences. 26: 6.
Iron pentacarbonyl (as Fe). 2011. NIOSH pocket guide to chemical hazards. Centers for Disease Control and Prevention. Accessed Oct. 20, 2022.
Jardin, D. 2015. Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae. 196(30): 3–14.
Kabir, L., W. K. Sang, S. K. Yun, and S. L. Youn. 2012. Application of rhizobacteria for plant growth promotion effect and biocontrol of anthracnose caused by Colletotrichum acutatum on paper. Mycobiology. 40: 244–251.
Kumar, A., J. Rabha, and D. K. Jha. 2021. Antagonistic activity of lipopeptide-biosurfactant producing Bacillus subtilis AKP against Colletotrichum capsici, the causal organism of anthracnose disease of chilli. Biocatalysis and Agricultural Biotechnology. 36: 102133.
Lask, G., and H. Wagner. 1962. Influence of additives on the velocity of laminar flames. Eighth International Symposium on Combustion. 432–438.
Li, H., H. Yue, L. Li, Y. Liu, H. Zhang, J. Wang, and X. Jiang. 2021. Seed bio stimulant Bacillus spp. MGW9 improve the salt tolerance of maize during seed germination. AMB express. 11: 74.
Li, H., Y. Zhao, and X. Jiang. 2019. Seed soaking with Bacillus sp. Strain HX-2 alleviates negative affect of drought stress on maize seedlings. Chilean Journal of Agricultural Research. 79(3): 396–404.
Luo, Y., and J. D. Helmann. 2011. Analysis of the role of Bacillus subtilis σM in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Molecular Microbiology. 83(3): 623–639.
Madla, S., D. Miura, and H. Wariishii. 2012. Optimization of extraction method for GC-MS based metabolomics for filamentous fungi. Journal of Microbial and Biochemical Technology. 4: 005–009.
Mahapatra, S., R. Yadav, and W. Ramakrishna. 2022. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. Journal of Applied Microbiology. 132: 3543–3562.
Massave, V. C., A. Hanif, A. Farzand, D. K. Mburu, S. O. Ochola, and L. Wu. 2018. Volatile compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum. Phytopathology. 108: 1373-1385.
Morton, D.T., and N. H. Stroube. 1955. Antagonistic and stimulatory effects of microorganism upon Sclerotium rolfsii. Phytopathology. 45: 419-420.
National Center for Biotechnology Information. 2022. PubChem compound summary for CID 11006, Hexadecane. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Hexadecane. Accessed Oct. 10, 2022.
National Center for Biotechnology Information. 2022. PubChem compound summary for CID 12403, Heneicosane. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Heneicosane. Accessed Oct. 8, 2022.
National Center for Biotechnology Information. 2022. PubChem compound summary for CID 13195, 4-methylimidazole. Available: https://pubchem.ncbi.nlm.nih.gov/compound/4-Methylimidazole. Accessed Oct. 10, 2022.
National Center for Biotechnology Information. 2022. PubChem compound summary for CID 441072, (S)- 2-propylpiperidine. Available: https://pubchem.ncbi.nlm.nih.gov/compound/S_-2-Propylpiperidine. Accessed Oct. 12, 2022.
National Center for Biotechnology Information. 2022. PubChem compound summary for CID 86540, 3,8-dimethylundecane. Available: https://pubchem.ncbi.nlm.nih.gov/compound/3_8-Dimethylundecane. Accessed Oct. 12, 2022.
Naziya, B., M. Murali, and K.N. Amruthesh. 2019. Plant growth-promoting fungi (PGPF) instigate plant growth and induce disease resistance in Capsicum annuum L. upon infection with Colletotrichum capsici (Syd.) Butler & Bisby. Biomolecules. 10: 41.
Orhan, E., M. KÖSE, D. Alkan, and L. ÖZTÜRK. 2019. Synthesis and characterization of some new 4-Methyl-5-Imidazole carbaldehyde derivatives. Journal of the Turkish chemical society section A: Chemistry. 6(3): 373–382.
Peter, B. 2010. Chapter 42 - Understanding and optimizing the microbial degradation of olive oil: a case study with the thermophilic bacterium Geobacillus thermoleovorans IHI-91. Olives and Olive Oil in Health and Disease Prevention. 377–386 p.
Prapagdee, B., L. Tharasaithong, R. Nanthaplot, and C. Paisitwiroj. 2012. Efficacy of crude extract of antifungal compounds produced from Bacillus subtilis on prevention of anthracnose disease in dendrobium orchid. Environment Asia. 5(1): 32–38.
Praveena, A., and K. P. Sanjayan. 2016. A bioinformatic approach the insecticidal property of Morinda tinctoria Roxb. against the cotton bollworm Helicoverpa armigra. Research Journal of Pharmacy and Technology. 9(11): 1829–1834.
Radhakrishnan, R., A. Hashem, and E. F. A. Allah. 2017. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environment. Frontiers in Physiology. 8: 667.
Rahman M. M. E., D. M. Hossain, K. Suzuki, A. Shiiya, K. Suzuki, and T. K. Dey. 2016. Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathology. 45: 103.
Rani, N., and R. S. Dahiya. 2013. Imidazoles as promising scaffolds for antibacterial activity: a review. Mini reviews in Medicinal Chemistry. 1812–1835.
Rhetso, T., R. Shubbharani, and V. Sivaram. 2020. Chemical constituents, antioxidant, and antimicrobial activity of Allium chinense. Future Journal of Pharmaceutical Sciences. 6: 102.
Richaud, A., F. Mendez, N. Barba-Behrens, P. Florian, O.N. Medina-Campos, and J. Pedraza-Chaverri. 2021. Electrophilic modulation of the superoxide anion radical scavenging ability of copper (II) complexes with 4-Methyl imidazole. The Journal of Physical Chemistry. 125(12): 2394–2401.
Riu, M., J. S. Son, S. K. Oh, and C. M. Ryu. 2022. Aromatic agriculture: volatile compound-based plant disease diagnosis and crop protection. Research in Plant Disease. 28(1): 1–18.
Rodriguez-Ortega, P. G., R. Casas, A. Marchal-Ingrain, and B. Gilbert-López. 2019. Synthesis and structural characterization of a ubiquitous transformation product (BTS 40348) of fungicide prochloraz. Journal of Agricultural and Food Chemistry. 67(31): 8641–8648.
Saharan, B., and V. Nehra. 2011. Plant growth promoting rhizobacteria: a critical review. Life Science and Medical Research. 21: 1-30.
United States Department of Agriculture. 2004. Dr. Duke’s Phytochemical and Ethnobotanical Databases. Available: https://phytochem.nal.usda.gov/phytochem/search/list?et=&count=&max=20&sort=&qlookup=%28S%29-2-Propylpiperidine&offset=20&order=desc. Accessed Nov. 1, 2022.
Vanitha, V., S. Vijayakumar, M. Nilavukkarasi., V. N. Punitha, E. Vidhya, and P. K. Praseetha. 2020. Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Industrial Crops and Products. 154: 112748.
Vermeersch, K. A., L. Wang, J. F. McDonald, and M. P. Styczynski. 2014. Distinct metabolite responses of an ovarian cancer stem cell line. BMC systems biology. 8: 134.
Widnyana, I. K., M. Ngga, and P. L. Y. Sapanca. 2014. The effect of seed soaking with Rhizobacteria Pseudomonas alcaligenes om the growth of swamp cabbage (Ipomoeae repants Poir). The 2nd International Joint Conference on Science and Technology 27 – 28 September 2017. Bali, Indonesia.
Yamamoto, S., S. Shiraishi, Y. Kawagoe, M. Mochizuki, and S. Suzuki. 2015. Impact of Bacillus amyloliquefaciens S13-3 on control of bacterial wilt and powdery mildew in tomato. Pest Management Science. 71: 722–727.
Yu, G. Y., J. B. Sinclair, G. L. Hartman, and B. L. Bertagnolli. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology and Biochemistry. 34: 955–63.
Zhao, P., P. Li, S. Wu, M. Zhou, R. Zhi, and H. Gao. 2019. Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested litchi fruits. AMB Express. 9: 119.
Zhou, J. Y., X. Li, J. Y. Zheng, and C. C. Dai. 2016. Volatiles released by endophytic Pseudomonas fluorescens promoting the growth and volatile oil accumulation in Atractylodes lancea. Plant Physiology and Biochemistry. 101: 132-140.