Evaluation of heat tolerance in Thai lowland indigenous rice germplasm in seedling and grain filling stages

Main Article Content

Christnapaul Therdkitcharoen
Sompong Chankaew
Tidarat Monkham
Jirawat Sanitchon

Abstract

High temperature stress in rice is likely to occur in all rice growing systems in Thailand. In wet season, rice cultivated by broadcasting at the late of April to early May would be affected by high temperature in the seedling stage. In the dry season, rice will be affected by high temperatures during the grain filling stage in March to April. The experiment was high temperature tolerance evaluation in 132 lowland rice varieties at seedling and grain filling stages. Heat stress treatment was set at 45±3°C during 11:00 a.m. to 2:00 p.m. for 14 and 30 days in seedling and grain filling stages, respectively. The result showed that three groups of varieties based on leaf dead and dry weight reduction percentage included of 30 cultivars in group 1 (G1) had high temperature tolerance comparable to the standard check (N22). There was a decrease in dry weight of 40.8% – 59.7%. In conclusion, LLR-072, LLR-146 and LLR-232 were resistance to high temperatures at seedling stage due to the slow leaf death. At grain filling stage, group 1 (49 cultivars) showed low seed weight reduction by 65% - 68%, high filled seeds per plant, 100 seed weight and 100% seed number. However, in G1 at grain filling stage, there was a high reduction in 100% filled seed number, but low reduction in 75% and 50% filled seed number. The result showed that this group maintained higher seed weight than other groups. At the grain filling stage, LLR-230, LLR-232 and LLR-262 showed low decreasing in seed weight, filled seeds per plant and 100 seed weight. Interestingly, LLR-232 was high resistance at both seedling and grain filling stages.

Article Details

How to Cite
Therdkitcharoen, C. ., Chankaew, S. ., Monkham, T., & Sanitchon, J. . (2023). Evaluation of heat tolerance in Thai lowland indigenous rice germplasm in seedling and grain filling stages. Khon Kaen Agriculture Journal, 51(5), 975–993. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/258373
Section
บทความวิจัย (research article)

References

กรมการข้าว. 2560. ข้อมูลพันธุ์ข้าวไทย. แหล่งข้อมูล: https://www.ricethailand.go.th. ค้นเมื่อ 17 มีนาคม 2566.

กรมอุตุนิยมวิทยา. 2566. ข้อมูลฟ้าอากาศประเทศไทย. แหล่งข้อมูล: https://www.tmd.go.th. ค้นเมื่อ 17 มีนาคม 2566.

ชเนษฎ์ ม้าลำพอง. 2564. พันธุ์ข้าวทนทานต่ออุณหภูมิสูง พันธุ์แรกของประเทศไทย พันธุ์คิมหันต์. เกษตรอภิรมย์. 32: 16-19.

สำนักงานเศรษฐกิจการเกษตร. 2566. สถิติการเกษตรของประเทศไทย. แหล่งข้อมูล: http://www.oae.go.th. ค้นเมื่อ 17 มีนาคม 2566.

อาทิตย์ ผาภุมมา. 2561. การประเมินศักยภาพการให้ผลผลิตข้าวไร่ และข้าวนาสวนพันธุ์พื้นเมืองในพื้นที่ปลูก จังหวัดขอนแก่น. วิทยานิพนธ์ปริญญาวิทยาศาสตรมหาบัณฑิต. มหาวิทยาลัยขอนแก่น. ขอนแก่น, ประเทศไทย. 102 หน้า.

Aryan, S., G. Gulab, N. Habibi, K. Kakar, M.I. Sadat, T. Zahid, and R.A. Rashid. 2022. Phenological and physiological responses of hybrid rice under different high-temperature at seedling stage. Bulletin of the National Research Centre. 46: 45.

Bahuguna, R.N., J. Jha, P. Madan, D. Shah, M.L. Lawas, S. Khetarpal, and S. Jagadish. 2015. Physiological and biochemical characterization of NERICA-L 44: a novel source of heat tolerance at the vegetative and reproductive stages in rice. Physiologia Plantarum. 154: 543–559.

Barnabas, B., K. Jager, and A. Feher. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment. 31: 11–38.

Begcy, K., J. Sandhu, and H. Walia. 2018. Transient heat stress during early seed development primes germination and seedling establishment in rice. Frontiers in Plant Science. 1768.

Beena, R., S. Kirubakaran, N. Nithya, A. Manickavelu, R.P. Sah, P.S. Abida, J. Sreekumar, P.M. Jaslam, R. Rejeth, V.G. Jayalekshmy, S. Roy, R.V. Manju, M.M. Viji, and K.H.M. Siddique. 2021. Association mapping of drought tolerance and agronomic traits in rice (Oryza sativa L.) landraces. BMC Plant Biology. 21: 484.

Cao, Y., H. Duan, L. Yang, Z. Wang, L. Liu, and J. Yang. 2009. Effect of high temperature during heading and early filling on grain yield and physiological characteristics in Indica rice. Acta Agronomica Sinica. 35: 512-521.

Cheabu, S., P. Moung-ngam, A. Arikit, A. Vanavichit, and C. Malumpong. 2018. Effects of heat stress at vegetative and reproductive stages on spikelet fertility. Rice Science. 25: 218-226.

Endo, M., T. Tsuchiya, K. Hamada, S. Kawamura, K. Yano, M. Ohshima, A. Higashitani, M. Watanabe, and M. Kawagishi-Kobayashi. 2009. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Cell Physiology. 50: 1911-1922.

FAOstat. 2023. Rice export data. Available: https://www.fao.org/faostat/. Accessed Mar. 14, 2023.

Feng, B., C. Zhang, T. Chen, X. Zhang, L. Tao, and G. Fu. 2018. Salicylic acid reverses pollen abortion of rice caused by heat stress. BMC Plant Biology. 18: 245.

Goswami, S., R.R. Kumar, S. Bakshi, and S. Praveen. 2022. Starch metabolism under heat stress. In: Kumar, R.R., Praveen, S., Rai, G.K. (eds). Thermotolerance in Crop Plants. Springer, Singapore. https://doi.org/10.1007/978-981-19-3800-9_9.

Kaga, A., T. Shimizu, S. Watanabe, Y. Tsubokura, Y. Katayose, K. Harada, D.A. Vaughan, and N. Tomooka. 2012. Evaluation of soybean germplasm conserved in NIAS genebank and development of mini core collections. Breeding Science. 61(5): 566-92.

Kilasi, N.L., J. Singh, C.E. Vallejos, C. Ye, S.V.K. Jagadish, P. Kusolwa, and B. Rathinasabapathi. 2018. Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science. 9: 1578.

Kojima, Y., K. Ebana, S. Fukuoka, T. Nagamine, and M. Kawase. 2005. Development of an RFLP-based rice diversity research set of germplasm. Breeding Science. 55: 431-440.

Li, X., L.M.F. Lawas, R. Malo, U. Glaubitz, A. Erban, R. Mauleon, S. Heuer, E. Zuther, J. Kopka, D.K. Hincha, and K.S.V. Jagadish. 2015. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell Environment. 38: 2171-2192.

Manjunatha, P.B., N. Sinha, H. Krishna, D. Chauhan, P. Kumar, R.R. Kumar, N. Jain, P.K. Singh, and G.P. Singh. 2020. Exploration of heat stress-responsive markers in understanding trait associations in wheat. Journal of Plant Biology. 64: 167–179.

Matsui, T., K. Omasa, and T. Horie. 1997. High temperature induced spikelet sterility of japonica rice at flowering in relation to air humidity and wind velocity conditions. Japanese Journal of Crop Science. 66: 449-455.

Ravikiran, R.T., S. G. Krishnan, K.P. Abhijith, H. Bollinedi, M. Nagarajan, K.K. Vinod, P.K. Bhowmick, M. Pal, R.K. Ellur, and A. K. Singh. 2022. Genome-wide association mapping reveals novel putative gene candidates governing reproductive stage heat stress tolerance in rice. Frontiers in Genetics. 13: 876522.

Sarsu, F. 2018. Screening protocols for heat tolerance in rice at the seedling and reproductive stages. In: Pre-Field Screening Protocols for Heat-Tolerant Mutants in Rice. Springer, Cham. https://doi.org/10.1007/978-3-319-77338-4_2.

Scafaro, A.P., P.A. Haynes, and B. Atwell. 2010. Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. Journal of Experimental Botany. 61: 191–202.

Shi, W., X. Yin, P.C. Struik, C. Solis, F. Xie, R.C. Schmidt, M. Huang, Y. Zou, C. Ye, and S.V.K. Jagadish. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes. Journal of Experimental Botany. 68: 5233-5245.

Wang, Y., L. Wang, J. Zhou, S. Hu, H. Chen, J. Xiang, Y. Zhang, Y. Zeng, Q. Shi, D. Zhu, and Y. Zhang. 2019. Research progress on heat stress of rice at flowering stage. Rice Science. 26: 1-10.

Wei, H., J. Liu, Y. Wang, N. Huang, X. Zhang, L. Wang, J. Zhang, J. Tu, and X. Zhong. 2012. A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48 °C high temperature at seedling stage. Journal of Heredity. 104: 287-294.

Weihun, Z., X. Dawie, and Z. Guoping. 2012. Identification and physiological characterization of thermo-tolerant rice genotypes. Journal of Zhejiang University (Agriculture and Life Sciences). 38: 1–9.

Xu, J., A. Henry, and N. Sreenivasulu. 2020. Rice yield formation under high day and night temperatures-A prerequisite to ensure future food security. Plant, Cell & Environment. 43: 1595-1608.

Xu, Y., C. Chu, and S. Yao. 2021. The impact of high-temperature stress on rice: Challenges and solutions. The Crop Journal. 9: 963-976.

Yamakawa, H., T. Hirose, M. Kuroda, and T. Yamaguchi. 2007. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiology. 144: 258–277.

Ye, C., M. Argayoso, E. Redoña, S. Sierra, M. Laza, C. Dilla, Y. Mo, M. Thomson, J. Chin, C. Delaviña, G. Diaz, and J. Hernandez. 2012. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breeding. 131: 33–41.

Zhang, R., S. Hussain, Y. Wang, Y. Liu, Q. Li, Y. Chen, H. Wei, P. Gao, and Q. Dai. 2021. Comprehensive evaluation of salt tolerance in rice (Oryza sativa L.) germplasm at the germination stage. Agronomy. 11: 1569.