Effects of biocontrol agents and pesticides on pest and disease management in green oak lettuce (Lactuca sativa L. var crispa) in greenhouses.
Main Article Content
Abstract
Agriculture for green economy is in the current trend. Thailand has continuous expansion in the green agricultural economy. Thus, a main driving force is reduction of environmental impact coincided with increased productivity. This study aimed to evaluate the biocontrol effectiveness of three biocontrol agents (BCAs), including Trichoderma asperellum TBRC 4734, Metarhizium anisopliae BCC 4849 and Beauveria bassiana BCC 2660 to compare with pesticide for insect pest and disease control, vegetable product quality, chemical soil properties, pesticide residue in soil and green oak lettuce plantation in greenhouse. Plant diseases were not detected in all the treatments. On the other hand, two insect pests were found, including thrips (in the order Thysanoptera) and tobacco whitefly (Bemisia tabaci). Both BCA and synthetic-BCA combined treatments led to a notable decrease in the pest population in the 2nd to 3rd week period. The BCA treatment decreased the thrips and tobacco whitefly populations by 75.5 and 42.4%, respectively. The synthetic-BCA combination decreased the thrips and tobacco whitely populations by 90.1 and 15.6%, respectively. While the synthetic treatment could control in first week (1st to 2nd) but 2nd to 3rd week period resulted in increases of the populations of two pests by 28.6 and 35.0%, respectively. For the soil environment, the BCA treatment also led to an increase of the available nitrate by 343.3 mg/kg at the end of treatment compared to the start period. The nitrate was reduced by 168.6 mg/kg in the synthetic treatment. For chemical residue, no pesticide residue was found in the BCA treatment, strikingly in contrast to the finding of 333.9 and 10.7 mg/kg carbaryl in soil and lettuce for the synthetic treatment, respectively. Our study revealed that BCAs are effective alternatives for pest management in green oak lettuce, consequently mitigating pesticide and environmental impacts for GAP and organic agriculture.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กรมพัฒนาที่ดิน. 2553. คู่มือการปฏิบัติงาน กระบวนการวิเคราะห์ตรวจสอบดินทางเคมี. แหล่งข้อมูล: https://www.ldd.go.th/
PMQA/2553/Manual/OSD-03.pdf. ค้นเมื่อ 13 มกราคม 2566.
กรมส่งเสริมการเกษตร กระทรวงเกษตรและสหกรณ์. 2565. การจัดเก็บและรายงานผลข้อมูลภาวการณ์ผลิตพืชระดับตำบล (รต.) รายงานสถิติทางการเกษตร พืชอายุสั้น (รต.01) จำแนกตามพืช/แมลง. แหล่งข้อมูล:https://production.doae.go.th/service/site/index. ค้นเมื่อ 3 มกราคม 2566.
พัชรี ธีรจินดาขจร. 2554. คู่มือการวิเคราะห์ดินทางเคมี. โรงพิมพ์มหาวิทยาลัยขอนแก่น, ขอนแก่น.
วรางคณา จันดา. 2565. ชีวภัณฑ์ทางเลือกของสารเคมีกำจัดแมลงศัตรูพืชในโรงเรือนเมล่อน. วิทยานิพนธ์ ปริญญาวิทยาศาสตร มหาบัณฑิต มหาวิทยาลัยเกษตรศาสตร์. กรุงเทพฯ.
วรางคณา จันดา, คณิตา ตังคณานุรักษ์ และอลงกรณ์ อำนวยกาญจนสิน. 2565. ชีวภัณฑ์ทางเลือกของสารเคมีกำจัดแมลงศัตรูพืชในโรงเรือนเมล่อน. แก่นเกษตร. 50(6): 1683-1700.
ศรีกาญจนา คล้ายเรือง. 2555. การสลายคลอเรตโดยแบคทีเรียรีดิวส์คลอเรตที่แยกได้จากดินและกากตะกอนน้ำเสีย. แหล่งข้อมูล: https://librae.mju.ac.th/goverment/20111119104834_librae/File20130603102512_13685.pdf. ค้นเมื่อ 13 มกราคม 2566.
สุธาสินี อั้งสูงเนิน. 2558. ผลกระทบต่อสิ่งแวดล้อมจากการใช้สารเคมีกำจัดศัตรูพืช. วารสารวิชาการมหาวิทยาลัยอีสเทิร์นเอเชีย ฉบับวิทยาศาสตร์และเทคโนโลยี. 9(1): 50-63.
สำนักงานมาตรฐานสินค้าการเกษตรและอาหารแห่งชาติ กระทรวงเกษตรและสหกรณ์. 2559. สารพิษ: ปริมาณสารพิษตกค้างสูงสุด. แหล่งข้อมูล: https://www.acfs.go.th/standard/download/MAXIMUM-RESIDUE-LIMITS.pdf. ค้นเมื่อ 20 มกราคม 2566.
สำนักวิจิยอารักขาพืช กรมวิชาการเกษตร. มปป. แมลงหวี่ขาวยาสูบพาหนะโรคใบด่างมันสำปะหลัง. แหล่งข้อมูล: https://www.opsmoac.go.th/bpsp-dwl-files-402891791844. ค้นเมื่อ 20 มกราคม 2566.
Amnuaykanjanasin, A., J. Jirakkakul, C. Panyasiri, P. Panyarakkit, P. Nounurai, D. Chantasingh, L. Eurwilaichitr, S. Cheevadhanarak, and M. Tanticharoen. 2013. Infection and colonization of tissues of the aphid Myzus persicae and cassava mealybug Phenacoccus manihoti by the fungus Beauveria bassiana. BioControl. 58: 379–391.
Ansari, M., M. Moraiet, and S. Ahmad. 2014. Insecticides: Impact on the Environment and Human Health. p.99-123. In: A. Malik, E. Grohmann, and R. Akhtar. Environmental Deterioration and Human Health. Springer, Dordrecht.
Arora, s., and D. Sahni. 2016. Pesticides effect on soil microbial ecology and enzyme activity- An overview. Journal of Applied and Natural Science. 8(2): 1126–1132.
Baiyee, B., S. Itod, and A. Sunpapao. 2019. Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiological and Molecular Plant Pathology. 106: 96-101.
Bhanti, M., and A. Taneja. 2007. Contamination of vegetables of different seasons with organophosphorous pesticides and related health risk assessment in northern India. Chemosphere. 69(1): 63-68.
Bremner, J.M., and D.R. Keeney. 1966. Determination and isotope-ratio analysis of different forms of nitrogen in soils: 3. exchangeable ammonium, nitrate, and nitrite by extraction-distillation methods. Soil Science Society of America Journal. 30(5): 577-582.
Bunning, M.L., P.A. Kendall, M.B. Stone, F.H. Stonaker, and C. Stushnoff. 2010. Effects of seasonal variation on sensory properties and total phenolic content of 5 lettuce cultivars. Journal of Food Science. 75(3): 156-161.
Carr, M.K.V., and S.M. Dodds. 1983. Some effects of soil compaction on root growth and water use of lettuce. Experimental Agriculture. 19: 117-130.
Carter, M.R., and E.G. Gregorich. 2007. Soil Sampling and Methods of Analysis. 2nd Edition. Chemical Rubber Company, FL.
Collier, R., and D. Norman. 2018. Pest Insects Infesting Lettuce Crops. Agriculture and Horticulture Development Board, Warwickshire.
Das, S.K., and A. Varma. 2010. Role of Enzymes in Maintaining Soil Health. p.25-42. In: G. Shukla, and A. Varma. Soil Enzymology. Springer, Berlin.
Elad Y., G. Zimand, Y. Zaqs, S. Zurie, and I. Chet. 1993. Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathol. 42(3): 324–332.
Guzmán, A.G., D. Sacristán, A.R.S. Rodríguez, V. Barrón, J. Torrent, and M.C.D. Campillo. 2020. Soil nutrients effects on the performance of durum wheat inoculated with entomopathogenic fungi. Agronomy. 10(4): 1-19.
Halifu, S., X. Deng, X. Song, and R. Song. 2019. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests. 10(9): 758.
Howell, C.R. 2007. Effect of Seed Quality and Combination Fungicide-Trichoderma spp. Seed Treatments on Pre- and Postemergence Damping-Off in Cotton. Phytopathology. 97(1): 66-71.
Hua, D., X. Zheng, K. Zhang, S. Zhang, Y. Wan, X. Zhou, Y. Zhang, and Q. Wu. 2020. Assessing pesticide residue and spray deposition in greenhouse eggplant canopies to improve residue analysis. Journal of Agricultural and Food Chemistry. 68 (43): 11920-11927.
Katagi, T. 2004. Photodegradation of Pesticides on Plant and Soil Surfaces. p.1-195. In: G.W. Ware. Reviews of Environmental Contamination and Toxicology. Springer, NY.
Kempers, A.J., and A. Zweers. 1986. Ammonium determination in soil extracts by the salicylate method.
Communications in Soil Science and Plant Analysis. 17(7): 715-723.
Kim, S., J.C. Kim, S.J. Lee, M.R. Lee, S.E. Park, D. Li, S. Baek, T.Y. Shin, and J.S. Kim. 2020. Beauveria bassiana ERL836 and JEF-007 with similar virulence show different gene expression when interacting with cuticles of western flower thrips, Frankniella occidentalis. BMC Genomics. 21: 836.
Koohakan, P., T. Jeanaksorn, and I. Nuntagij. 2008. Major diseases of lettuce grown by commercial nutrient film technique in thailand. KMITL Science and Technology Journal. 8(2): 56-63.
Lemenih, M., E. Karltun, and M. Olsson. 2005. Assessing soil chemical and physical property responses to deforestation and subsequent cultivation in smallholders farming system in Ethiopia. Agriculture, Ecosystems & Environment. 105(1-2): 373-386.
Li, Y.T., S.G. Hwang, Y.M. Huang, and C.H. Huanga. 2018. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection. 110: 275-282.
Lima, M.P.R., A.M.V.M. Soares, and S. Loureiro. 2011. Combined effects of soil moisture and carbaryl to earthworms and plants: Simulation of flood and drought scenarios. Environmental Pollution. 159(7): 1844-1851.
Mao, T., and X. Jiang. 2021. Changes in microbial community and enzyme activity in soil under continuous pepper cropping in response to Trichoderma hamatum MHT1134 application. Scientific Reports. 11: 21585.
Ng, J.C.K., J.H.C. Peng, A.Y.S. Chen, T. Tian, J.S. Zhou, and T.J. Smith. 2021. Plasticity of the lettuce infectious yellows virus minor coat protein (CPm) in mediating the foregut retention and transmission of a chimeric CPm mutant by whitefly vectors. Journal of General Virology. 102(9): 001652.
Nicolopoulou-Stamati, P., S. Maipas, C. Kotampasi, P. Stamatis, and L. Hens. 2016. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health. 4(148): 1-8.
Ons, L., D. Bylemans, K. Thevissen, and B.P.A. Cammue. 2020. Combining biocontrol agents with chemical fungicides for Integrated plant fungal disease control. Microorganisms. 8(12): 1930.
Rebolledo-Prudencio, O.G., M. Dautt-Castro, M. Estrada-Rivera, M.C. González-López, S. Jijón-Moreno, and S. Casas-Flores. 2020. Chapter 1 - Trichoderma in the rhizosphere: an approach toward a long and successful symbiosis with plants. p.3-38. In: V.K. Gupta, H.B. Singh, S. Zeilinger, and I. Druzhinina. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, Amsterdam.
Resh, H.M. 2013. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower. Chemical Rubber Company Press, NY.
Saquib, Q., M.A. Siddiqui, S.M. Ansari, H.A. Alwathnani, J. Musarrat, and A.A. Al-Khedhairy. 2020. Cytotoxicity and genotoxicity of methomyl, carbaryl, metalaxyl, and pendimethalin in human umbilical vein endothelial cells. Journal of Applied Toxicology. 41(5): 832-846.
Singh, J.P. 1988. A rapid method for determination of nitrate in soil and plant extracts. Plant and Soil. 110: 137–139.
Singh, V., R.S. Upahyay, B.K. Sarm, and H.B. Singh. 2016. Trichoderma asperellum spore dose depended modulation of plant growth in vegetable crops. Microbiological Research. 193: 74-86.
Steinwandter, H. 1991. Contributions to residue analysis in soils. Fresenius' Journal of Analytical Chemistry. 340: 389–391.
Sunaryani, A., and R.T. Rosmalina. 2021. Persistence of carbaryl pesticide in environment using system dynamics model. IOP Conf. Ser.: Earth Environ. Sci. 623: 012048.
The Global Food Security Index (GFSI). 2022. Global Food Security Index 2022. Available: https://impact.economist.com/sustainability/project/food-security-index/reports/Economist_Impact_GFSI_2022_Global_Report_Sep_2022.pdf. Accessed Feb. 20, 2023.
Tian, T., L. Rubio, H. Yeh, B. Crawford, and B.W. Falk. 1999. Lettuce infectious yellows virus: in vitro acquisition analysis using partially purified virions and the whitefly Bemisia tabaci. Journal of General Virology. 80: 1111–1117.
Walkley, A. 1947. A critical Examination of a rapid method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63(4): 251-264.
Wang, M., D. He, F. Shen, J. Huang, R. Zhang, W. Liu, M. Zhu, L. Zhou, L. Wang, and Q. Zhou. 2019. Effects of soil compaction on plant growth, nutrient absorption, and root respiration in soybean seedlings. Environmental Science and Pollution Research. 26: 22838-22845.
Wang, Y., L. Zhang, J. Wu, W. Jiang, and L. Mei. 2022. Diversity and effects of competitive Trichoderma species in Ganoderma lucidum–cultivated soils. Front Microbiol. 13: 1067822.
Wasuwan, R., N. Phosrithong, B. Promdonkoy, D. Sangsrakru, C. Sonthirod, S. Tangphatsornruang, S. Likhitrattanapisal, S. Ingsriswang, C. Srisuksam, K. Klamchao, M. Suksangpanomrung, T. Hleepongpanich, S. Reungpatthanaphong, M. Tanticharoen, and A. Amnuaykanjanasin. 2021. The fungus Metarhizium sp. BCC 4849 is an effective and safe mycoinsecticide for the management of spider mites and other insect pests. Insects. 13(1): 42.
Webber, N.R., M.D. Boone, and C.A. Distel. 2010. Effects of aquatic and terrestrial carbaryl exposure on feeding ability, growth, and survival of American toads. Environmental Toxicology and Chemistry. 29(10): 2323-2327.
Wichienchote, N., S. Jaiyen, and A. Amnuaykanjanasin. 2022. The entomophathogenic fungus Beauveria bassiana for biological control of tobacco whitefly (Bemisia tabaci), an important vector of cassava mosaic virus. In Proceedings of the 21st Asian Mycological Congress 3-5 August 2022. Pathum Thani, Thailand.
Wonglom, P., S. Ito, and A. Sunpapao. 2020. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defenseresponse and promote plant growth in lettuce (Lactuca sativa). Fungal Ecology. 43: 100867.
Zhang, C., W. Wang, M. Xue, Z. Liu, O. Zhang, J. Hou, M. Xing, R. Wang, and T. Liu. 2021. The combination of a biocontrol agent Trichoderma asperellum SC012 and hymexazol reduces the effective fungicide dose to control Fusarium wilt in cowpea. Journal of Fungi. 7(9): 685.
Zhou, H., H. Fang, S.J. Mooney, and X. Peng. 2016. Effects of long-term inorganic and organic fertilizations on the soil micro and macro structures of rice paddies. Geoderma. 266: 66-74.
Zin, N.A., and N.A. Badaluddin. 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences. 65(2): 168-178.
Zongmao, C., and W. Haibin. 1997. Degradation of pesticides on plant surfaces and its prediction - a case study on tea plant. Environmental Monitoring and Assessment. 44: 303–313.