Efficiency and characteristic of Bacillus velezensis isolate BB35 in controlling Burkholderia gladioli causing leaf stripe and stem rot of sweet corn diseases

Main Article Content

Onnapha Chiangkhaek
Angsana Akarapisan

Abstract

The objectives of this study were to determine the efficacy and check the gene of antibiotic synthesis-related genes from Bacillus sp. isolate BB35 concerning the inhibition of plant pathogen mechanisms of sweet corn. The results showed that Bacillus sp. isolate BB35 could inhibit Burkholderia gladioli and had an inhibition zone of a radial of 7.5 mm based on their efficacy with the dual culture method. The Bacillus sp. isolate BB35 was molecularly identified as Bacillus velezensis using the sequences of the DNA gyrase subunit A (gyrA), DNA ribosomal RNA (16S rRNA), and DNA-directed RNA polymerase subunit beta (rpoB) genes. Additionally, by producing siderophores and solubilizing inorganic phosphate, potassium, and phosphorus, the B. velezensis isolate BB35 functioned as a plant growth-promoting rhizobacteria (PGPR). The investigation of genes related to antibiotic synthesis was conducted for the B. velezensis isolate BB35. The findings showed that the production of antibiotic substances, such as surfactin, fengycin, bacillomycin D, and itulin A, was regulated by the biosynthesis genes srfAA, fenD, bamA, and ituA, respectively. In accordance with this research, it could be possible to manage the causes of stem rot and leaf stripe in sweet corn by using antagonistic bacteria in both greenhouse and field conditions.


 

Article Details

How to Cite
Chiangkhaek, O., & Akarapisan, A. (2024). Efficiency and characteristic of Bacillus velezensis isolate BB35 in controlling Burkholderia gladioli causing leaf stripe and stem rot of sweet corn diseases. Khon Kaen Agriculture Journal, 52(2), 273–286. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/259547
Section
บทความวิจัย (research article)
Author Biographies

Onnapha Chiangkhaek, Division of Plant Pathology, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai

 

 

 

Angsana Akarapisan, Division of Plant Pathology, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai

 

 

References

ทิพวรรณ กันหาญาติ, ณัฏฐิมา โฆษิตเจริญกุล, บูรณี พั่ววงษ์แพทย์ และรุ่งนภา ทองเคร็ง. 2560. การทดสอบประสิทธิภาพของแบคทีเรียปฏิปักษ์ในการควบคุมโรคเน่าสีน้ำตาลของกล้วยไม้สาเหตุจากแบคทีเรีย Burkholderia gladioli pv. gladioli. รายงานผลงานประจำปี สำนักวิจัยพัฒนาการอารักขาพืช, กรมวิชาการเกษตร. 1062-1071.

เบญจวรรณ สุขนิยม และเทพศักดิ์ บุณยรัตพันธุ์. 2562. ปัจจัยที่มีผลสัมฤทธิ์ในการนำงานวิจัยข้าวโพดหวานลูกผสมพันธุ์ชัยนาท 2 ของกรมวิชาการเกษตรไปใช้ประโยชน์. วารสารนวัตกรรมการศึกษาและการวิจัย. 3(1): 15-24.

Adeniji, A.A., D.T. Loots, and O.O. Babalola. 2019. Bacillus velezensis: phylogeny, useful applications, and avenues for exploitation. Applied Microbiology and Biotechnology. 103: 3669-3682.

Andric, S., T. Meyer, and M. Ongena. 2020. Bacillus responses to plant-associated fungal and bacterial communities. Frontiers in Microbiology. 11(1350): 1-9.

Athukarala, S.N.P., W.G.D. Fernando, and K.Y. Rashid. 2009. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Canadian Journal of Microbiology. 55: 1021-1032.

Beneduzi, A., A. Ambrosini, and L. M. P. Passaglia. 2012. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology. 34(4) (suppl): 1044-1051.

Beric, T., M. Kojic. S. Stankovic, and L. Topisirovic. 2012. Antimicrobial activity of Bacillus sp. natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technology and Biotechnology. 50(1): 25-31.

Cui, L., C. Yang, L. Wei, T. Li, and X. Chen. 2020. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab. Biological Control. 141(104156): 1-7.

Deng, Y. Y. Zhu, P. Wang, L. Zhu, J. Zheng, R. Li, L. Ruan, D. Peng, and M. Sun. 2011. Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. Journal of Bacteriology. 193(8): 2070-2071.

Dong, Q., Q. Liu, P.H. Goodwin, X. Deng, W. Xu, M. Xia, J. Zhang, R. Sun, C. Wu, Q. Wang, K. Wu, and L. Yang. 2023. Isolation and genome-based characterization of biocontrol potential of Bacillus siamensis YB-1631 against wheat crown rot caused by Fusarium pseudograminearum. Journal of Fungi. 9(5): 1-19.

Ercole, T.H., V.M. Kava, R. Aluizio, V. Pauletti, M. Hungria, and L.V. Galli-Terasawa. 2023. Co-inoculation of Bacillus velezensis and Stenotrophomonas maltophilia strains improves growth and salinity tolerance in maize (Zea mays L.). Rhizosphere. 27 (1-14).

Gijon-Hernandez, A., D. Teliz-Oreiz, D. Mejia-Sanchez, R.D.L. Torre-Almaraz, E. Cardenas-Soriano, C.D. Leon, and A. Mora-Aguilera. 2011. Leaf stripe and stem rot caused by Burkholderia gladioli, a new maize disease in Mexico. Journal of Phytopathology. 159: 377-381.

Gorai, P.S., R. Ghosh, S. Mandal, S. Ghosh, S. Chatterjee, S.K. Gond, and N.C. Mandal. 2021. Bacillus siamensis CNE6- a multifaceted plant growth-promoting endophyte of Cicer arietinum L. having broad spectrum antifungal activities and host colonizing potential. Microbiological Research. 252: 1-12.

Heo, S., J.H. Kim, M.S. Kwak, D.W. Jeong, and M.H. Sung. 2021. Functional genomic insights into probiotic Bacillus siamensis strain B28 from traditional Korean fermented kimchi. Foods. 10(8): 1-12.

Jasim, B., C. J. Jimtha, M. Jyothis, and E. K. Radhakrishnan. 2013. Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regulation. 71: 1-11.

Ji, C., M. Zhang, Z. Kong, X. Chen, X. Wang, W. Ding, H. Lai, and Q. Guo. 2021. Genomic analysis reveals potential mechanisms underlying promotion of tomato plant growth and antagonism of soilborne pathogens by Bacillus amyloliquefaciens Ba13. Microbiology spectrum. 9(3): 1-13.

Joshi, R., and M. Gardener. 2006. Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Biological Control. 96(2): 145-154.

Kaspar, F., P. Neubauer, and M. Gimpel. 2019. Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. Journal of Natural Products. 82: 2038-2053.

Kim, S.Y., H. Song, M.K. Sang, H.Y. Weon, and J. Song. 2017. The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid. Journal of Biotechnology. 259(10): 221-227.

Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution. 35(6): 1547-1549.

Kumvinit, A., and A. Akarapisan. 2023. Antibiotic biosynthesis gene of Bacillus velezensis as a bioagent for controlling blackleg and soft rot of potato. International Journal of Agriculture Technology. 19(2): 505-516.

Lang, S. 2002. Biological amphiphiles (microbial biosurfactants). Current Opinion in Colloid and Interface Science. 7: 12-20.

Li, Z., K. X. Fernandez, J. C. Vederas, and M. G. Ganzle. 2023. Composition and activity of antifungal lipopeptides produced by Bacillus spp. in daqu fermentation. Food Microbiology. 111: 1-10.

Lilge, L., N. Ersig, P. Hubel, M. Aschern, E. Pillai, P. Klausmann, J. Pfannstiel, M. Henkel, K. M. Heravi, and R. Hausmann. 2022. Surfactin shows relatively low antimicrobial activity against Bacillus subtilis and other bacterial model organisms in the absence of synergistic metabolites. Microorganisms. 10(779): 1-19.

Liu, B., H. Qiao, L. Huang, H. Buchenauer, Q. Han, Z. Kang, and Y. Gong. 2009. Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biological Control. 49: 277-285.

Matsunaka, M., N. C. Thanh, T. Uedoi, T. Lida, Y. Fujino, T. Ohmori, Y. Hiromasa, T. Ohshima, and K. Doi. 2022. Complete genome sequence of Bacillus cereus strain HT18, isolated from forest soil. Environmental Microbiology. 11(3): 1.

Medeot, D. B., M. Fernandez, G. M. Morales, and E. Jofre. 2020. Fengycins from Bacillus amyloliquefaciens MEP2 18 exhibit antibacterial activity by producing alterations on the cell surface of the pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeryginosa PA01. Frontiers in Microbiology. 10(3107): 1-12.

Meng, D., W. Jiang, J. Li, L. Huang, L. Zhai, L. Zhang, Z. Guan, Y. Cai, and X. Liao. 2019. An alkaline phosphatase from Bacillus amyloliquefaciens YP6 of new application in biodegradation of five broad-spectrum organophosphorus pesticides. Journal of Environmental Science and Health, Path B. 54(4): 336-343.

Miljakovic, D., J. Marinkovic, and S. Balesevic-Tubic. 2020. The significance of Bacillus spp. in disease suppression and growth promotion of filed and vegetable crops. Microorganisms. 8(1037): 1-19.

Mnif, I., and D. Ghribi. 2015. Potential of bacterial derived biopesticides in pest management. Crop Protection. 77: 52-64.

Nye, T.M., J.W. Schroeder, D.B. Kearns, and L.A. Simmons. 2017. Complete genome sequence of undomesticated Bacillus subtilis strain NCIB 3610. Genome Announcements. 5(20): 1-2.

Pajcin, I., V. Vlajkov, M. Frohme, S. Grebinyk, M. Grahavac, M. Mojicevic, and J. Grahovac. 2020. Pepper bacterial spot control by Bacillus velezensis: bioprocess solution. Microorganisms. 8(1463): 1-22.

Pan, H., X. Tian, M. Shao, Y. Xie, and H. Huang. 2019. Genome mining and metabolic profiling illuminate the chemistry driving diverse biological activities of Bacillus siamensis SCSIO 05746. Applied Microbiology and Biotechnology. 103(10): 4153-4165.

Rahman, M.M., M.E. Ali, A.A. Khan, A.M. Akanda, Md.K. Uddin, U. Hashim, and S.B.A. Hamid. 2012. Isolation, characterization, and identification of biological control agent for potato soft rot in Bangladesh. The Scientific World Journal. 723293: 1-6.

Raymaekers, K., L. Ponet, D. Holtappels, B. Berckmans, and B.P.A. Cammue. 2020. Screening for novel biocontrol agents applicable in plant disease management – A review. Biological Control. 144: 104-240.

Schroeder, J.W., and L.A. Simmons. 2013. Complete genome sequence of Bacillus subtilis strain PY79. Genome Announcements. 1(16): 1.

Souza, R. D., A. Ambrosini, and L. M. P. Passaglia. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology. 38(4): 401-419.

Srimai, K., and A. Akarapisan. 2023. Occurrence, identification and preliminary biological control of bulb rot of onion (Allium cepa). Chiang Mai Journal of Science. 50(3): 1-13.

Vahidinasab, M., I. Adiek, B. Hosseini, S.O. Akintayo, B. Abrishamchi, J. Pfannstiel, M. Henkel, L. Lilge, R.T. Voegele, and R. Hausmann. 2022. Characterization of Bacillus velezensis UTB96, demonstrating improved lipopeptide production compared to the strain B. velezensis FZB42. Microorganisms. 10(11): 1-17.

Yan, Y., W. Xu, Y. Hu, R. Tian, and Z. Wang. 2022. Bacillus velezensis YYC promotes tomato growth and induces resistance against bacterial wilt. Biological Control. 172(104977): 1-12.

Yu, X., C. Ai, L. Xin, and G. Zhou. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology. 47(2): 138-145.

Yurnaliza, Y., D.I. Rambe, L. Sarimunggu, M. Purba, I. Nurwahyuni, S. Lenny, A. Lutfia, and A. Hartanto. 2020. Screening of Burkholderia spp. from oil palm plantation with antagonistic properties against Ganoderma boninense. Biodiversitas Journal of Biological Diversity. 21(8): 3431-3437.

Zeriouh, H., D. Romero, L. G. Gutierrez, F. M. Cazorla, A. de Vicente, and A. P. Garcia. 2011. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial disease of cucurbits. The American Phytopathological Society. 24(12): 1540-1552.

Zhao, X., H. Zheng, J. Zhen, W. Shu, S. Yang, J. Xu, H. Song, and Y. Ma. 2020. Multiplex genetic engineering improves endogenous expression of mesophilic α-amylase gene in a wild strain Bacillus amyloliquefaciens 205. International Journal of Biological Macromolecules. 165: 609-618.

Zheng, L., S. Huang, T. Hsiang, G. Yu, D. Guo, Z. Jiang, and J. Li. 2021. Biocontrol Using Bacillus amyloliquefaciens PP19 Against Litchi Downy Blight Caused by Peronophythora litchii. Frontiers in Microbiology. 11: 1-9.

Zhou, Y., Q. Li, Z. Peng, J. Zhang, and J. Li. 2022. Biocontrol effect of Bacillus subtilis YPS-32 on potato common scab and its complete genome sequence analysis. Agricultural and Food Chemistry. 70(17): 5339-5348.