Allelopathic effect of hemp leaf on germination and growth of some crop and weed species
Main Article Content
Abstract
At present, farmers are increasingly on hemp (Cannabis sativa L.) cultivation due to its wide range of applications, resulting in a significant increase in agricultural waste materials. It has been reported that hemp produces allelochemicals, which can inhibit the growth of neighboring plants. The objective of this experiment is to study the allelopathic effects of hemp leaves on the germination and growth of 10 different species (rice, corn, wheat, itchgrass, feather pennisetum, chinese kale, lettuce, pea bean, waterkanon, and siam weed), and to investigate its autotoxicity, using the sandwich method. The result showed that hemp dry leaves release allelochemicals that significantly inhibit the germination, shoot length, root length, fresh weight, and dry weight of all 10 tested plant species. Increasing the concentration of the dry leaf further enhanced the inhibitory effects, with a stronger tendency to inhibit dicotyledonous plants compared to monocotyledonous plants. The dry leaf had the most significant inhibitory effect on the germination and growth of waterkanon. After exposure to a concentration of 1.43 mg DW/mL agar, it resulted in inhibition levels exceeding 80% for germination, shoot length, and root length. Moreover, when subjected to a concentration exceeding 7.14 mg DW/mL agar, it led to complete inhibition, reaching 100%. Regarding autotoxicity, hemp dry leaf with low concentrations did not affect the germination and promoted the growth of hemp seedlings. However, hemp dry leaf with a concentration of 7.14 mg DW/mL agar or higher significantly inhibited the germination and seedling growth of hemp. These results revealed that hemp dry leaf had the allelopathic potential to control germination and growth of other plant species.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กระทรวงสาธารณสุข. 2566. สืบค้นข้อมูลพื้นที่ปลูก กัญชงกัญชา: กัญชงผ่านระบบสารสนเทศทางภูมิศาสตร์ (GIS). แหล่งข้อมูล: http://hemp.fda.moph.go.th/FDA_MARIJUANA/service/map. ค้นเมื่อ 24 กรกฎาคม 2566.
กลุ่มพัฒนาพฤติกรรมการบริโภค กองพัฒนาศักยภาพผู้บริโภค สำนักงานคณะกรรมการอาหารและยา กระทรวงสาธารณสุข. 2564. เรื่องน่ารู้ กัญชาทางการแพทย์ กัญชงพืชเศรษฐกิจ. บริษัท ทีเอส อินเตอร์พริ้นท์ จำกัด. สมุทรปราการ.
จวงจันทร์ ดวงพัตรา. 2529. เทคโนโลยีเมล็ดพันธุ์. โรงพิมพ์ทั่งฮั่วซิน. กรุงเทพฯ.
ฐานข้อมูลพรรณไม้ องค์การสวนพฤกษศาสตร์ กระทรวงทรัพยากรและสิ่งแวดล้อม. 2566. แหล่งข้อมูล: http://www.qsbg.org/Database/plantdb/index.asp. ค้นเมื่อ 1 กรกฎาคม 2566.
วีระชัย ณ นคร. 2564. กัญชง (กัญชา) ความรู้เบื้องต้น : ชีววิทยาและเทคนิคการปลูก. บริษัทธรรมสารจำกัด. นนทบุรี.
อินทิรา ขูดแก้ว. 2559. ผลทาง allelopathy ของวัชพืชบางชนิดต่อการงอกและการเติบโตของผักกาดหอม (Lactuca sativa L.). แก่นเกษตร. 44: 771–776.
Agnieszka, S., R. Magdalena, B. Jan, W. Katarzyna, B. Malgorzata, H. Krzysztof and K. Danuta. 2016. Phytotoxic effect of fiber hemp essential oil on germination of some weeds and crops. Journal of Essential Oil Bearing Plants. 19: 262–276.
Al-Shatti, A. H., A. Redha, P. Suleman and R. Al-Hasan. 2014. The allelopathic potential of Conocarpus lancifolius (Engl.) leaves on dicot (Vigna sinensis L.), monocot (Zea mays L.) and soil-borne pathogenic fungi. American Journal of Plant Sciences. 5: 2889–2903.
Amâncio, B. C. S., K. P. Govêa, L. de O. R. Trindade, A. R. C. Neto, T. C. de Souza, and S. Barbosa. 2020. Sandwich method applied to the screening of allelopathic action in Byrsonima spp. (Malpighiaceae). Biologia. 75: 175–182.
Ashrafi, Z. Y., S. Sadeghi, H. R. Mashhadi, and M. A. Hassan. 2008. Allelopathic effects of sunflower (Helianthus annuus) on germination and growth of wild barley (Hordeum spontaneum). Journal of Agricultural Technology. 4: 219–229.
Chon, S. U., J. A. Jennings, and C. J. Nelson. 2006. Alfafa (Medicago sativa L.) autotoxicity: current status. Allelopathy Journal. 18(1): 57–80.
Chu, C., P.E. Mortimer, H. Wang, Y. Wang, X. Liu, and S. Yu. 2014. Allelopathic effects of Eucalyptus on native and introduced tree species. Forest Ecology and Management. 323: 79–84.
El-Khawas, S. A., and M. M. Shehata. 2005. The allelopathic potentialities of Acacia nilotica and Eucalyptus rostrata on monocot (Zea mays L.) and dicot (Phaseolus vulgaris L.) plants. Journal of Biotechnology. 4: 23–34.
Fujii, Y., S. S. Parvez, M. M. Parvez, Y. Ohmae, and O. Iida. 2003. Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management. 3: 233–241.
Janatová, A., A. Fraňková, P. Tlustoš, K. Hamouz, M. Božik, and P. Klouček. 2018. Yield and cannabinoids contents in different cannabis (Cannabis sativa L.) genotypes for medical use. Industrial Crops and Products. 112: 363–367.
Konstantinović, B., A. Koren, M. Kojić, N. Samardžić, V. Sikora, and M. Popov. 2021. Allelopathic properties of hemp. Contemporary Agriculture. 70: 101–107.
Koodkaew, I., and R. Rottasa. 2017. Allelopathic effects of giant sensitive plant (Mimosa pigra) leaf powder on germination and growth of popping pod and purslane. International Journal of Agriculture and Biology. 19: 1113–1118.
Miller, D. A. 1996. Allelopathy in forage crop systems. Agronomy Journal. 88: 854–859.
Patanè, C., A. Pellegrino, S. L. Cosentino, and G. Testa. 2023. Allelopathic effects of Cannabis sativa L. aqueous leaf extracts on seed germination and seedling growth in durum wheat and barley. Agronomy. 13: 454. https://doi.org/10.3390/agronomy13020454.
Pate, D. W. 1994. Chemical ecology of Cannabis. Journal of the International Hemp Association. 2: 32–37.
Pratley, J., P. Dowling, and R. Medd. 1996. Allelopathy in annual grasses. Journal of Plant Protection Quarterly. 11: 213–214.
Pudełko, K., L. Majchrzak, and D. Narożna. 2014. Allelopathic effect of fibre hemp (Cannabis sativa L.) on monocot and dicot plant species. Industrial Crops and Products. 56: 191–199.
Putnam, R. Alan, and S. O. Duke.1985. Weed allelopathy. Boca Raton, Florida.
Reigosa, M. J., A. Sánchez-Moreiras, and L. González. 1999. Ecophysiological approach in allelopathy. Journal of Critical Reviews in Plant Sciences. 18: 577–608.
Rice, E.L. 1984. Allelopathy 2nd ed. Academic Press, New York.
Singh, H. P., D. R. Batish, and R. K. Kohli. 2010. Autotoxicity: concept, organisms, and ecological significance. Critical Reviews in Plant Sciences. 18: 757–772.
Singh, N. B., and R. Thapar. 2003. Allelopathic influence of Cannabis sativa on growth and metabolism of Parthenium hysterophorus. Allelopathy Journal. 12(1): 61–70.
Wang, C., Z. Liu, Z. Wang, W. Pang, L. Zhang, Z. Wen, Y. Zhao, J. Sun, Z-Y. Wang, and C. Yang. 2022. Effects of autotoxicity and allelopathy on seed germination and seedling growth in Medicago truncatula. Frontiers in Plant Science. Doi: 10.3389/fpls.2022.908426.