Effect of different stem portion on germination, growth, development and yield of 2 cassava genotypes grown by mini cutting
Main Article Content
Abstract
Knowledge of rapid cassava propagation techniques is a crucial approach to increase the production of cassava stem cuttings free from cassava mosaic disease to meet the demand of farmers under the disease outbreak situation. This study aimed to evaluate the effect of stem portions for mini cutting on germination, seedling vigor index, growth, development, and yield of two cassava genotypes with different branching patterns grown by mini cutting. A 2 x 2 factorial experiment in completely randomized design with four replications was used. Factor A consisted of two cassava genotypes (Rayong 9 and CMR38-125-77), and factor B was different stem positions for mini cutting (top and middle parts). This experiment was conducted in trays under greenhouse condition and in pots under natural condition. Results found that the CMR38-125-77 genotype had higher percentages of sprouting, speed of germination, seedling vigor index, seedling height, seedling dry weight, plant height development, number of leaves, and canopy height at 1-4 months after transplanting (MAP) compared to the Rayong 9. Meanwhile, the middle part stem cuttings of both genotypes had higher sprouting percentage, seedling vigor index, speed of germination, root length, leaf area, above-ground dry weight, tuber dry weight, and biomass at 6 MAP than the top part. However, a significant difference was not observed between cassava genotypes for storage root dry weight at 6 MAP. Additionally, it was also found that the CMR38-125-77 planted from the middle stem part had the highest harvest index.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
มูลนิธิสถาบันพัฒนามันสำปะหลังแห่งประเทศไทย. 2566. พันธุ์ต้านทานมันสำปะหลังชุดแรกของประเทศไทย. บริษัทเท็กซ์ แอนด์ เจอร์นัล พับลิเคชั่น จำกัด. กรุงเทพฯ.
สถาบันวิจัยและพัฒนาแห่งมหาลัยเกษตรศาสตร์. 2558. การใช้ประโยชน์ผลิตภัณฑ์จากมันสำปะหลัง. แหล่งข้อมูล: https://www3.rdi.ku.ac.th/?p=17866. ค้นเมื่อ 14 กรกฎาคม 2565.
สำนักงานเศรษฐกิจการเกษตร. 2563. เนื้อที่เพาะปลูก จำนวนครัวเรือน และเนื้อที่เพาะปลูกเฉลี่ยต่อครัวเรื่อนระดับจังหวัดปี 2563. แหล่งข้อมูล: https://www.oae.go.th/assets/portals/1//prcaidata/files/Casava%20Holdland%2063.pdf. ค้นเมื่อ 4 มกราคม 2565.
สำนักส่งเสริมการค้าสินค้าเกษตรและอุตสาหกรรม. 2564. ผลิตภัณฑ์มันสำปะหลัง. แหล่งข้อมูล: https://ditp.go.th. ค้นเมื่อ 14 กรกฎาคม 2565.
โอภาษ บุญเส็ง. 2563. มันสำปะหลังไทย ชีววิทยา การผลิต และการแปรรูป. ไม่ปรากฏสถานที่พิมพ์.
Abdul-Baki, A. A., and J. D. Anderson. 1973. Vigor determination in soybean seed by multiple criteria. Crop Science. 13(6): 630-633.
Amarullah, I. D., P. Yudono, and B. D. Sunarminto. 2016. Effect of source sink manipulation on yield and related yield components in cassava, Manihot esculenta Crantz. International Journal of Agricultural Research, Innovation and Technology. 6(2): 69-76.
Bona, C. M., I. R., Biasetto, M. Masetto, C. Deschamps, and L. A. Biasi. 2012. Influence of cutting type and size on rooting of Lavandula dentata L. Revista Brasileira de Plantas Medicinais. 14: 8-11.
Burns, A., R. Gleadow, J. Cliff, A. Zacarias, and T. Cavagnaro. 2010. Cassava: the drought, war and famine crop in a changing world. Sustainability. 2(11): 3572-3607.
Czabator, F. J. 1962. Germination value: an index combining speed and completeness of pine seed germination. Forest Science. 8(4): 386-396.
El‐Sharkawy, M. A., S. M. De Tafur, and L. F. Cadavid. 1992. Potential photosynthesis of cassava as affected by growth conditions. Crop Science. 32(6): 1336-1342.
El-Sharkawy. 2014. Global warming: causes and impacts on agroecosystems productivity and food security with emphasis on cassava comparative advantage in the tropics/subtropics. Photosynthetica. 52(2): 161-178.
Fogaça, C. M., B. F. Sant'Anna-Santos, D. C. Cordeiro, T. D. Correia, F. L. Finger, W. C. Otoni, and A. Cargnin. 2010. In vitro microtuberization of cassava cultivars: morphological and anatomical aspects. Acta Botanica Brasilica. 24: 624-630.
Hartmann, H. T., D. E. Kester Davies, F. T. Junior, and R. L. Geneve. 2011. Plant propagation: principles and practices, 8th edition, Englewood Clipps. 915 p.
Hartati, T. M., C. Roini, and I. Rodianawati. 2021. Growth response of local cassava to cutting models and the number of buds. Caraka Tani: Journal of Sustainable Agriculture. 36(2): 379-391.
Hidayat, R. 2004. Study of assimilate translocation patterns at different plant ages of mangosteen (Garcinia Mangostana L.). Jurnal Agrosains. 6(1): 20-25.
Janket, A., N. Vorasoot, B. Toomsan, W. Kaewpradit, P. Theerakulpisut, C. C. Holbrook, C. K. Kvien, S. Jogloy, and P. Banterng. 2021. Quantitative evaluation of macro-nutrient uptake by cassava in a tropical savanna climate. Agriculture. 11(12): 1199.
Mohankumar, C.R. 1988. Planting material production and nursery practices in cassava. In Production and Utilization of Cassava in India. pp. 61-67.
Neves, R. J., R. P. Diniz, and E. J. Oliveira. 2018. Productive potential of cassava plants (Manihot esculenta Crantz) propagated by leaf buds. Anais da Academia Brasileira de Ciências. 90: 1733-1747.
Neves, R. J., L. S. Souza, and E. J. Oliveira. 2019. A leaf bud technique for rapid propagation of cassava (Manihot esculenta Crantz). Scientia Agricola. 77: e20180005.
NurulNahar, E., and S.L. Tan. 2012. Cassava mini-cuttings as a source of planting material. Journal of Tropical Agriculture and Food Science. 40(1): 145-151.
Office of Agricultural Economics. 2020. Situation analysis of cassava mosaic disease. Available: https://www.nabc.go.th/disaster/baidang. Accessed Oct. 12, 2020.
Phoncharoen, P., P. Banterng, N. Vorasoot, S. Jogloy, P. Theerakulpisut, and G. Hoogenboom. 2019a. Growth rates and yields of cassava at different planting dates in a tropical savanna climate. Scientia Agricola. 76: 376-388.
Phoncharoen, P., P. Banterng, N. Vorasoot, S. Jogloy, P. Theerakulpisut, and G. Hoogenboom. 2019b. The impact of seasonal environments in a tropical savanna climate on forking, leaf area index, and biomass of cassava genotypes. Agronomy. 9(1): 19.
Rüscher, D., J. M. Corral, A. V. Carluccio, P. A. Klemens, A. Gisel, L. Stavolone, H. E. Neuhaus, F. Ludewig, E. Sonnewald, and W. Zierer. 2021. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. Journal of Experimental Botany. 72(10): 3688-3703.
Santanoo, S., K. Vongcharoen, P. Banterng, N. Vorasoot, S. Jogloy, S. Roytrakul, and P. Theerakulpisut. 2019. Seasonal variation in diurnal photosynthesis and chlorophyll fluorescence of four genotypes of cassava (Manihot esculenta Crantz) under irrigation conditions in a tropical savanna climate. Agronomy. 9(4): 206.
Statistix. 2013. version 10; Analytical Software: Tallahassee, FL, USA.
Tokunaga, H, B. Tamon, I. Manabu, I. Kasumi, K. Ok-Kyung, H.H. Le, K.L. Hoang, M. Kensaku, T.N. Keiko, V.D. Nguyen, N.H. Huu, C.N. Nien, A.V. Nguyen, N. Hisako, S. Motoaki, S. Pao, T. Hirotaka, T. Bunna, X.T. Hoat, U. Masashi, U. Ayaka, U. Yoshinori, W. Prapit and T. Keiji. 2018. Sustainable management of invasive cassava pests in Vietnam, Cambodia, and Thailand. In: Kokubun M and S. Asanuma (Eds.). Crop production under stressful conditions. Singapore: Springer, p. 131–157.
Tokunaga, H., N. H. Anh, N. V. Dong, L. H. Ham, N. T. Hanh, N. Hung, and M. Seki. 2020. An efficient method of propagating cassava plants using aeroponic culture. Journal of Crop Improvement. 34(1): 64-83.
Yomeni M., M. A. Akoroda, and Dixon 2012. Cassava (Manihot esculenta Crantz) stems quality for root production effectiveness. In: Proceedings of the 11th triennial Symposium of the ISTRC-AB held at Memling Hotel: Tropical roots and tuber crops and the challenges of globalization and climate changes, p. 261-269.