In vitro callus induction of lotus embryo

Main Article Content

Supanath Kanjanawattanawong
Wannakorn Sriton
Raheema Wamaedeesa

Abstract

The lotus (Nelumbo nucifera) is a tropical flowering plant widely utilized as a beautiful flower as well as a therapeutic herb. The lotus embryo, known as "Dee Bua" in Thai traditional medicine, has many health advantages, including lowering blood pressure and enlarging blood vessels. However, because of seasonal effects and environmental factors, led the plant became dormancy; brought to the unique flowering season, lotus embryo supply and continuity are restricted. As a result, this research project aims to investigate the production of callus development from aseptically grown lotus embryos as a potential future strategy for manufacturing secondary metabolites. The findings revealed that different surface sterilization procedures including dipping in 95% ethyl alcohol and burning with frame or soaking in Haiter® with different concentrations and times produced explants with no contamination and 100% survival explant. Using Murashige and Skoog (MS) media supplemented with various PGRs, the effects of plant growth regulators (PGRs) on callus induction were investigated. A callus induction rate of 66.67% was achieved using a combination of 2,4-D (2.20 mg/L) and BAP (0.11 mg/L), with an average callus size of 0.48 cm. Furthermore, as compared to other examined techniques, the generated callus showed substantial increases in shoot length (1.12 cm) and leaf petiole length (0.99 cm). Following that, the effect of different LED lights (blue, red, violet, and dark) on callus growth and development was explored, and it was discovered that diverse light sources had no significant effect on callus induction and development (p<0.05). The callus survival rate ranged from 72.50% to 90.00%, whereas the callus formation rate ranged from 27.50% to 49.16%, and callus weight/explant ranged from 0.04-0.07 g.

Article Details

How to Cite
Kanjanawattanawong, S., Sriton, W., & Wamaedeesa, R. . (2024). In vitro callus induction of lotus embryo. Khon Kaen Agriculture Journal, 52(5), 911–923. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/260816
Section
บทความวิจัย (research article)

References

จิตเกษม เที่ยงจิตต์, ภัควดี ภักดีงาม และสุเม อรัญนารถ. 2546. การชักนำให้เกิดแคลลัสในบัวหลวงพันธุ์บุณฑริก. น. 105-110. ใน: การสัมมนาวิชาการ เรื่อง พัฒนาบัวให้เป็นพืชเศรษฐกิจของชาติ. มหาวิทยาลัยเกษตรศาสตร์ มูลนิธิวิทยาศาสตร์การเกษตร.

ทวีพงศ์ สุวรรณโร. 2567. การทำนาบัว. สำนักส่งเสริมและฝึกอบรม มหาวิทยาลัยเกษตรศาสตร์. แหล่งข้อมูล: http://eto.ku.ac.th/neweto/e-book/plant/flower/nabau.pdf. ค้นเมื่อ 11 เมษายน 2567.

เยาวพา จิระเกียรติกุล, รัชนีวรรณ จิระพงศ์พัฒนา, ภาณุมาศ ฤทธิไชย, ศรีโสภา เรืองหนู และอรุณ พรอิฐรัตน์. 2562. ผลของ ระยะเวลากระตุ้นด้วยสารสกัดยีสต์ต่อปริมาณสารทุติยภูมิของยอดหัวข้าวเย็น (Dioscorea birmanica Prain & Burkill) ในสภาพปลอดเชื้อ. วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์. 28(10): 1759-1770.

สุวิมล โต่นวุธ. 2553. บัวหลวง - บัวสาย ทลายพิษ. กรีน - ปัญญาญาณ. นนทบุรี.

Abd Alhady, M. R. A. A., R. E. S. Abo El-Fadl, G. A. E. M. Hegazi, and S. Y. Desoukey. 2020. In vitro production of some secondary metabolites from Cupressus sempervirens. Journal of Advanced Biomedical and Pharmaceutical Sciences. 3(3): 127-134.

Ahmadpoor, F., N. Zare, R. Asghari, and P. Sheikhzadeh. 2022. Sterilization protocols and the effect of plant growth regulators on callus induction and secondary metabolites production in in vitro cultures Melia azedarach L. AMB Express. 12(1): 1-12.

Alvarenga, I. C. A., F. V. Pacheco, S. T. Silva, S. K. V. Bertolucci, and J. E. B. P. Pinto. 2015. In vitro culture of Achillea millefolium L.: quality and intensity of light on growth and production of volatiles. Plant Cell, Tissue and Organ Culture (PCTOC). 122: 299-308.

Arunyanart, S., and M. Chaitrayagun. 2005. Induction of somatic embryogenesis in lotus (Nelumbo nucifera Geartn.). Scientia Horticulturae. 105(3): 411-420.

Bharathi Priya, L., C. Y. Huang, R. M. Hu, B. Balasubramanian, and R. Baskaran. 2021. An updated review on pharmacological properties of neferine—A bisbenzylisoquinoline alkaloid from Nelumbo nucifera. Journal of Food Biochemistry. 45(12): e13986.

Bloomfield, S. F., M. Arthur, E. Looney, K. Begun, and H. Patel. 1991. Comparative testing of disinfectant and antiseptic products using proposed European suspension testing methods. Letters in Applied Microbiology. 13(5): 233-237.

Buathong, R., K. Saetiew, S. Phansiri, N. Parinthawong, and S. Arunyanart. 2013. Tissue culture and transformation of the antisense DFR gene into lotus (Nelumbo nucifera Gaertn.) through particle bombardment. Scientia Horticulturae. 161: 216-222.

Chandana, B. C., H. C. Nagaveni, D. Lakshmana, S. S. Kolakar, and M. S. Heena. 2018. Role of plant tissue culture in micropropagation, secondary metabolites production and conservation of some endangered medicinal crops. Journal of Pharmacognosy and Phytochemistry. 7(3S): 246-251.

Chen, Y., G. Fan, H. Wu, Y. Wu, and A. Mitchell. 2007. Separation, identification and rapid determination of liensine, isoliensinine and neferine from embryo of the seed of Nelumbo nucifera Gaertn. by liquid chromatography coupled to diode array detector and tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 43(1): 99-104.

Deepa, A. V., M. Anju, and T. D. Thomas. 2018. The Applications of TDZ in Medicinal Plant Tissue Culture. In: Ahmad, N., Faisal, M. (eds) Thidiazuron: From Urea Derivative to Plant Growth Regulator. Springer, Singapore.

Deng, X., Y. Xiong, J. Li, D. Yang, J. Liu, H. Sun, H. Song, Y. Wang, J. Ma, Y. Liu, and M. Yang. 2020. The establishment of an efficient callus induction system for lotus (Nelumbo nucifera). Plants. 9(11): 1436.

Gulzar, B., A. Mujib, M. Q. Malik, J. Mamgain, R. Syeed, and N. Zafar. 2020. Plant tissue culture: agriculture and industrial applications. In Transgenic technology based value addition in plant biotechnology (pp. 25-49). Academic Press.

Gao, F., C. Peng, H. Wang, H. Shen, and L. Yang. 2021. Selection of culture conditions for callus induction and proliferation by somatic embryogenesis of Pinus koraiensis. Journal of Forestry Research. 32: 483–491.

Guo, G., ansd B. R. Jeong. 2021. Explant, medium, and Plant Growth Regulator (PGR) affect induction and proliferation of callus in Abies koreana. Forests. 12(10): 1388.

Hassanpour, H. 2022. Potential impact of red-blue LED light on callus growth, cell viability, and secondary metabolism of Hyoscyamus reticulatus. In Vitro Cellular and Developmental Biology-Plant. 58(2): 256-265.

Lai, C. C., H. Pan, J. Zhang, Q. Wang, Q. X. Que, R. Pan, Z. X Lai, and G. T. Lai. 2022. Light quality modulates growth, triggers differential accumulation of phenolic compounds, and changes the total antioxidant capacity in the red callus of Vitis davidii. Journal of Agricultural and Food Chemistry. 70(41): 13264-13278.

Liu, Q., D. Zhang, F. Liu, M. Qin, and D. Tian. 2019. Micropropagation of Nelumbo nucifera ‘Weishan Hong’ through germfree mature embryos. In Vitro Cellular and Developmental Biology-Plant. 55: 305-312.

Matsumoto, K., M. C. Coelho, D. C. Momte, and J. B. Teixera. 2009. Sterilization of non-autoclavable vessels and culture media by sodium hypochlorite for in vitro culture. Acta Horticulturae. 839: 329-336.

Mukherjee, P. K., D. Mukherjee, A. K. Maji, S. Rai, and M. Heinrich. 2009. The sacred lotus (Nelumbo nucifera)–phytochemical and therapeutic profile. Journal of Pharmacy and Pharmacology. 61(4): 407-422.

Nacheva, L., N. Dimitrova, and A. Vassilev. 2021. Response of in vitro cultivated highbush blueberry (Vaccinium corymbosum L.) to different LED lighting. Acta Horticulturae. 1337: 17-24.

Pal, I., and P. Dey. 2015. A review on lotus (Nelumbo nucifera) seed. International Journal of Science and Research. 4(7): 1659-1665.

Ramandi, A., I. Y. Javan, F. M. Tazehabadi, G. I. Asl, R. Khosravanian, and M. H. Ebrahimzadeh. 2019. Improvement in seed surface sterilization and in vitro seed germination of ornamental and medicinal plant-Catharanthus roseus (L.). Chiang Mai Journal of Science. 46(6): 1107-1112.

Schaller, G. E., I. H. Street, and J. J. Kieber. 2014. Cytokinin and the cell cycle. Current Opinion in Plant Biology. 21: 7-15.

Si, Y., Y. Haxim, and L. Wang. 2022. Optimum sterilization method for in vitro cultivation of dimorphic seeds of the succulent halophyte Suaeda aralocaspica. Horticulturae. 8(4): 289.

Silva, S. T., S. K. V. Bertolucci, S. H. B. da Cunha, L. E. S. Lazzarini, M. C. Tavares, and J. E. B. P. Pinto. 2017. Effect of light and natural ventilation systems on the growth parameters and carvacrol content in the in vitro cultures of Plectranthus amboinicus (Lour.) Spreng. Plant Cell, Tissue and Organ Culture (PCTOC). 129: 501-510.

Suangto, S., S. Ruamrungsri, and P. Hongpakdee. 2019. Summer condition promoted growth, development, and carbohydrate content in sacred lotus (Nelumbo nucifera Gaertn.). Acta Horticulturea. 1298: 427-434.

Suo, J., C. Zhou, Z. Zeng, X. Li, H. Bian, J. Wang, M. Zhu, and N. Han. 2021. Identification of regulatory factors promoting embryogenic callus formation in barley through transcriptome analysis. BMC Plant Biology. 21(145): 1-19.

Talukdar, M., D.K. Swain, and P.B.S. Bhadoria. 2022. Effect of IAA and BAP application in varying concentration on seed yield and oil quality of Guizotia abyssinica (Lf) Cass. Annals of Agricultural Sciences. 67(1): 15-23.

Technical Service Group of Occidental Chemical Corporation. 2014. Sodium hypochlorite handbook. OxyChem, TX. Available: https://www.forceflowscales.com/downloads/chemical-safety/hypochlorite/Hypo_Handbook_Oxy_Chem.pdf. Accessed Oct.15, 2023.

Tomaszewicz, W., M. Cioć, K. Dos Santos Szewczyk, M. Grzyb, W. Pietrzak, B. Pawłowska, and A. Mikuła. 2022. Enhancing in vitro production of the tree fern Cyathea delgadii and modifying secondary metabolite profiles by LED lighting. Cells. 11(3): 486.

Veluru, A., K. Devakumar, M. Neema, S. Shil, N. R. Nagaraja, and A. Karun. 2024. Effect of light-emitting diodes on somatic embryogenesis and tissue-cultured plantlet growth of arecanut (Areca catechu) dwarf hybrid VTLAH-2. Current Horticulture. 12(1): 55-60.

Yu, Y., W. Qin, Y. Li, C. Zhang, Y. Wang, Z. Yang, X. Ge, and F. Li. 2019. Red light promotes cotton embryogenic callus formation by influencing endogenous hormones, polyamines and antioxidative enzyme activities. Plant Growth Regulation. 87: 187-199.

Zaytseva, Y., A. Petruk, and T. Novikova. 2023. Thidiazuron and LED lighting enhance taxifolin and rutin production in Rhododendron mucronulatum Turcz. microshoot culture. Journal of Plant Growth Regulation. 42(5): 2933-2942.