Responses of Brassica microgreens to LED light spectra

Main Article Content

Thammasak Thongket
Arerat Pathumsut
Sinsupar Intasan
Suphawinee Simunla
Nonglak Bordeerat
Fern Akrawong

Abstract

Microgreens are seedling–stage vegetables that contain higher nutrition values than their respective mature stage. Hence, they are being popular among health–loving consumer and their production in controlled environment condition by using LED lighting has already begun. Light spectrum is the critical factor affecting the growth and quality of produces grown under artificial lighting. Hence, the objective of this study is to investigate the effects of light spectra on growth and some health–benefit phytochemicals of 3 brassica microgreens namely; Broccoli, Arugula and Purple kohlrabi. Three studies were conducted for each brassica microgreen by using a randomized completely block design with 3 replications and 6 LED light spectrum treatments consisting of white, red, blue, and red and blue with ratio of 2:1, 1:1 and 1:2, respectively. The light intensity and photoperiod were controlled at PPFD 150 µmol·m–2·s–1 for 12 h per day. The air temperature was controlled at 25 °C and the relative humidity and CO2 concentration in the grow room ranged between 65–80% and 350 ±50 ppm, respectively. All microgreens were harvested 12 days after sowing. The results revealed that red light gave the highest height, fresh weight and dry weight while white light gave the highest chlorophyll content for all microgreen species. Light spectrum with high blue light proportion promoted vitamin C and DDPH antioxidant capacity. Nevertheless, the optimum light spectrum promoting carotenoids and phenolic compounds varied with microgreen species.

Article Details

How to Cite
Thongket, T. ., Pathumsut, A., Intasan, S., Simunla, S., Bordeerat, N., & Akrawong, F. (2024). Responses of Brassica microgreens to LED light spectra. Khon Kaen Agriculture Journal, 52(5), 936–949. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/260928
Section
บทความวิจัย (research article)

References

ภัทระ แสงไชยสุริยา, บังอร เทพเทียน, ปาริชาติ จันทร์จรัส, ภูษิต ประคองสาย, กุมารี พัชนี และปิยะฉัตร ตระกูลวงษ์. 2563. รายงานโครงการทบทวนสถานการณ์และผลการดำเนินงานป้องกันควบคุมโรคไม่ติดต่อเรื้อรังในประเทศไทย พ.ศ. 2560–2562 เสนอต่อ กองโรคไม่ติดต่อ กรมควบคุมโรค. แหล่งข้อมูล: https://ddc.moph.go.th/uploads/publish/1036320200810073233.pdf. ค้นเมื่อ 13 พฤษภาคม. 2566.

ปิยาภรณ์ วรานุสันติกูล, สุชาดา โทผล, เจษฎา แพนาค, นิวัฒน์ กังวานรังสรรค์ และศรีสุดา หาญภาคภูมิ. 2559. การศึกษาการต้านอนุมูลอิสระของสารสกัดหยาบจากสาบเสือ. วารสารวิจัยมหาวิทยาลัยสวนดุสิต สาขาวิทยาศาสตร์และเทคโนโลยี. 9(2): 31–58.

ศูนย์วิจัยกสิกรไทย. 2560. แนวโน้มตลาดสินค้าอาหารสุขภาพ โอกาสและความท้าทายของผู้ประกอบการ SME. ธนาคารกสิกรไทย แหล่งข้อมูล: https://www.kasikornbank.com/th/business/sme/KSMEKnowledge/article/KSMEAnalysis/Documents/HealthyProduct.pdf. ค้นเมื่อ 13 พฤษภาคม 2566.

Bantis, F. 2021. Light spectrum differentially affects the yield and phytochemical content of microgreen vegetables in a plant factory. Plants. 10: 2182.

Brazaitytê, A., J. Miliauskienê, V. Vaštakaitê-Kairienê, R. Sutulienê, K. Laužikê, P. Duchovskis, and S. Małek. 2021. Effect of different ratios of blue and red LED light on Brassicaceae microgreens under a controlled environment. Plants. 10(4): 801.

Craver, J.K, J.R. Gerovac, R.G. Lopez, and D.A. Kopsell. 2017. Light intensity and light quality from sole–source light–emitting diodes impact phytochemical concentration within Brassica microgreens. Journal of the American Society for Horticultural Science. 142(1): 3–12.

Dereje, B., J.C. Jacquier, C.E. Kingston, M. Harty, and N. Harbourne. 2023. Brassica microgreens: phytochemical compositions, influences of growing practices, post–harvest technology, health, and food application. ACS Food Science and Technology. 3(6): 981–998.

Frede, K., M. Schreiner, and S. Baldermann. 2019. Light quality-induced changes of carotenoid composition in pak choi Brassica rapa ssp. Chinensis. Journal of Phytochemistry and Photobiology, B: biology. 193: 18–30.

Giuseppina, P, F. Orsini, S. Blasioli, A. Cellini, A. Crepaldi, I. Braschi, F. Spinelli, S. Nicola, J.A. Fernandez, C. Stanghellini, G. Gianquinto, and L.F. M. Marcelis. 2019. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red: blue ratio provided by LED lighting. Scientific Reports. 9: 14127.

Holden, M. 1976. Chemistry and Biochemistry of Plant Pigments (Goodwin, T. W.), 2nd ed. Academic Press, New York, pp. 462–488.

Ilakiya, T., E. Parameswari, V. Davamani, and E. Prakash. 2020. Microgreens-combacting malnutrition problem. Research Today. 2(5): 110-112.

Kong, Y., S. Katherine, and Y. Zheng. 2020. Maximum elongation growth promoted as a shade-avoidance response by blue light is related to deactivated phytochrome: a comparison with red light in four microgreen species. Canadian Journal of Plant Science. 100: 314–326.

Kozai, T. 2013. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proceeding of Japan Academy, Ser. B 89 (2013).

Kozai, T., G. Niu, and M. Takagaki. 2016. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production. Academic Press., California, U.S.A.

Khwankaew, J., D.T. Nguyen, N. Kagawa, M. Takagaki, G. Maharjan, and N. Lu. 2018. Growth and nutrient level of water spinach (Ipomoea aquatica Forssk.) in response to LED light quality in a plant factory. Acta Horticulturae 1227: 653-660.

Larsen, D.H., H. Li, S. Shrestha, J.C. Verdonk, C.C.S Nicole, L.F.M. Marcelis, and E.J. Woltering. 2022. Lack of blue light regulation of antioxidants and chilling tolerance in basil. Frontiers in Plant Science. 13: 852654.

Lee, C.P., and G.C. Yen. 2006. Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. Journal of Agricultural Food Chemistry. 54(3): 779-84.

Lobato, A.K.S, M.C. Goncalves-Vidigal, P.S.V. Filho, C.A.B. Andrade, M.V. Kvitschal, and C.M. Bonato. 2010. Relationships between leaf pigments and photosynthesis in common bean plants infected by anthracnose. New Zealand Journal of Crop and Horticultural Science. 38(1): 29-37.

Lobiuc, A., V. Vasilache, O. Pintili, T. Stoleru, M. Burducea, M. Oroian, and M.M. Zamfirache. 2017. Blue and red LED illumination improves growth and bioactive compound contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules. 22(12): 2111.

Meas, S., K. Leungwilai, and T. Thongket. 2020. Enhancing growth and phytochemicals of two amaranth by LEDs light irradiation. Scientia Horticulturae. 265: 1–10.

Mosaleeyanon, K. 2021. Current situation, direction, policy support, and challenges of plant factories in Thailand. FFTC Agricultural Policy Platform. Available: https://ap.fftc.org.tw/article/2745. Accessed Jul. 20, 2023.

Nelson, J.A., and B. Bugbee. 2014. Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures. PLoS One. 9(6): e99010.

Pattison, P. M., J. Y. tsao, G. C. Brainard, and B. Bugbee. 2018. LEDs for photons, physiology, and food. Nature. 563: 493–500.

Qinglu, Y., Y. Kong, and Y. Zheng. 2020. Growth and appearance quality of four microgreen species under light–emitting diode lights with different spectral combinations. HortScience. 55(9): 1399–1405.

Roe, J.H., M.B. Mills, M.J. Oesterling, and C.M. Damron. 1948. The determination of diketo-L-gulonic acid, dehydro-L-ascorbic acid, and L-ascorbic acid in the same tissue extract by the 2,4-dinirophenylhydrazine method. Journal of Biological Chemistry. 174: 201–208.

Son, K.H., and M.M. Oh. 2015. Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Horticulture, Environment, and Biotechnology. 56: 639-653.

Stutte, G.W., and S. Edney. 2009. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience. 44: 79-82.

Wang, H., M. Gu, J. Cui, K. Shi, Y. Zhou, and J. Yu. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Journal of Phytochemistry and Photobiology. B, Biology. 96: 30–37.

Xiao, Z., G.E. Lester, Y. Luo, and Q. Wang. 2012. Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of Agricultural Food Chemistry. 60: 7644–7651.