Selection and population improvement on S1 non-progeny recurrent selection in Kareing Uthai native small-ear waxy corn variety

Main Article Content

Supaporn Sukto
Sombut Bowonpornmatee
Oranee Inthong
Chalong Kerdsri
Sangad Duangkeaw
Daorung Kongtien
Kreawan Boonngoen

Abstract

Our research endeavors to enhance the population of the Kareing Uthai native small-ear waxy corn variety, aiming for uniformity, increased ear abundance, higher yields, and superior quality. Selection and improvement of the population were conducted between 2018 and 2019 through three cycles of S1 non-progeny recurrent selection. This process resulted in the enhancement of four populations, each derived from three cycles. Each cycle involved three selection steps: 1) selfing pollination of the population, 2) bulk-full sib pollination of the population, and 3) open pollination of the population. In total, 24 plots were utilized, each comprising six rows, 5 m in length, with a spacing of 0.75 m between rows and 0.25 m between plants, resulting in 120 plants/plot. The base population (C0) and three improved populations (C1, C2, and C3), alongside four commercial check varieties (Tein Nampueng, Tein Khaow, Tein Lai-52, and Tein Leang Khonkaen), were evaluated using a randomized complete block design (RCBD) with three replications during the rainy season of 2022 at the Uthai Thani Agriculture Research and Development Center. Our findings indicate significant improvements in both unhusked and husked yield of the C3 population compared to the C0 population, with increases of 691 and 397 kg/rai, respectively, representing a 74.9% and 55.4% enhancement, respectively. Additionally, the C3 population demonstrated notable increases in total ear number, ear number at the first ear position, and ear number at the second ear position compared to the C0 population, showing increases of 5,417, 4,233, and 1,185 ears/rai, respectively, corresponding to enhancements of 59.6%, 113.6%, and 22.1%, respectively. Furthermore, the C3 population exhibited a higher total number of ears compared to all commercial varieties, namely Tein Namphoung, Tein Kaow, Tein Lai-52, and Tein Leang Khon Kaen, with respective ear counts of 338, 112, 3,386, and 451 ears/rai. 

Article Details

How to Cite
Sukto, S. ., Bowonpornmatee, S. ., Inthong, O. ., Kerdsri, C. ., Duangkeaw, S. ., Kongtien, D. ., & Boonngoen, K. . (2024). Selection and population improvement on S1 non-progeny recurrent selection in Kareing Uthai native small-ear waxy corn variety. Khon Kaen Agriculture Journal, 52(2), 261–272. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/260977
Section
บทความวิจัย (research article)

References

กรมวิชาการเกษตร. 2562. การป้องกันกำจัดหนอนกระทู้ข้าวโพดลายจุด. แผ่นพับวิชาการ กรมวิชาการเกษตร กระทรวงเกษตรและสหกรณ์.

ธำรงศิลป์ โพธิสูง, อำไพ เรืองฤทธิ์ และสำราญ ศรีชมพร. 2556. การทดสอบพันธุ์ข้าวโพดข้าวเหนียว ลูกผสม. น. 49- 56. ในการประชุมวิชาการข้าวโพดและข้าวฟ่างแห่งชาติ ครั้งที่ 36 วันที่ 5-7 มิถุนายน 2556 หนองคาย: กรมส่งเสริมการเกษตร กระทรวง เกษตรและสหกรณ์.

ทัศนีย์ จำรัสกุล, กมล เลิศรัตน์ และพลัง สุริหาร. 2552. การตอบสนองต่อการคัดเลือกพันธุ์แบบหมู่ประยุกต์เพื่อเพิ่มจำนวนฝักคู่ในประชากรข้าวโพดหวานพิเศษ. แก่นเกษตร. 37(ฉบับพิเศษ): 27-32.

ภราดร อุปพงษ์, กมล เลิศรัตน์ และพลัง สุริหาร. 2560. การคัดเลือกพันธุ์แบบหมู่ประยุกต์จำนวน 4 รอบ เพื่อเพิ่มลักษณะฝักดกในประชากรข้าวโพดเทียนสีม่วง. แก่นเกษตร. 45(1): 143-152.

อุดม วงศ์ชนะภัย, เพ็ญลักษณ์ ชูดี, และสุภาพร สุขโต. 2564. ความสำคัญของข้าวโพดฝักสดในภาคกลางและภาคตะวันตก. น. 1-17. ในการจัดการความรู้ เทคโนโลยีการผลิตข้าวโพดฝักสดที่เหมาะสมในเขตพื้นที่ภาคกลางและภาคตะวันตก. สำนักวิจัยและพัฒนาการเกษตรเขตที่ 5 กรมวิชาการเกษตร.

Ajala, S.O., J.G. Kling, S.K. Kim, and A.O. Obajimi. 2003. Improvement of maize population for resistance to downy mildew. Plant Breeding. 122: 328-333.

Bedada, L.T. and H. Jifar. 2010. Maize (Zea mays L.) genetic advances through S1 recurrent selection in Ethiopia. Journal of Environmental Issues and Agriculture in Developing Countries. 2(1): 154-169.

de Galarreta, J. I. R., and A. Álvarez. 2007. Six cycles of S1 recurrent selection in two Spanish maize synthetics. Spanish Journal of Agricultural Research. 5(2): 193-198.

Dhliwayo, T., N. Palacios-Rojas, J. Crossa, and K.V. Pixley. 2014. Effects of S1 recurrent selection for provitamin a carotenoid content for three open-pollinated maize cultivars. Crop Science. 54: 2449-2460.

Gomez, K.A., A.A. Gomez. 1984. Statistical Procedure for Agricultural Research. John Wiley and Sons: Singapore.

Hallauer, A. R. 1974. Heritability of prolificacy in maize. Crop Science. 24: 755-759.

Horne, D.W., M.S. Eller, and J.B. Holland. 2016. Responses to recurrent index selection for reduced Fusarium ear rot and lodging and for increased yield in maize. Crop Sciences. 56: 85-94.

Hussanun, S., B. Suriharn, and K. Lertrat. 2014. Yield and early maturity response to four cycles of modified mass selection in purple waxy corn. Turk Journal Field Crops. 19: 84–89.

Jenweerawat, S., C. Aekatasanawan, P. Laosuwan, and A. R. Hallauer. 2010. Potential lines and hybrids developed from modified reciprocal recurrent selection in maize. Kasetsart Journal Natural Science. 44: 517–522.

Kesornkeaw, P., K. Lertrat, and B. Suriharn. 2009. Response to four cycles of mass selection for prolificacy at low and high population densities in small ear waxy corn. Asian Journal of Plant Sciences. 8: 425-432.

Khamkoh W., D. Ketthaisong, K. Lomthaisong, K. Lertrat, and B. Suriharn. 2019. Recurrent selection method for improvement of lutein and zeaxanthin in orange waxy corn populations. Australian Journal Crop Sciences. 13: 566–573.

Kist, V., V. S. Albino, M. Maraschin, and J. B. Ogliari. 2015. Genetic variability for carotenoid content of grains in a composite maize population. Scientia Agricola. 71(6): 480-487.

Koirala, K.B., D.B. Gurung, B. Bhandari, and J.B. Chhetri. 2014. Population improvement of yellow and white maize through reciprocal recurrent selection. Nepal Agricultural Research Council. 2: 130-132.

Kolawole, A.O., A. Menkir, M. Gedil, E. Blay, K. Ofori, and J.G. Kling. 2017. Genetic divergence in two tropical maize composites after four cycles of reciprocal recurrent selection. Plant Breeding. 136: 41-49.

Kolawole. A.O., A. Menkir, E. Blay, K. Ofori, and J.G. Kling. 2019. Changes in heterosis of maize (Zea mays L.) varietal cross hybrids after four cycles of reciprocal recurrent selection. Cereal Research Communications. 47(1): 145-156.

Maita, R., and J.G. Coors. 1996. Twenty cycles of biparental mass selection for pollinated in the open-pollinated maize population golden glow. Crop Science. 36: 1527–1532.

Peng, Z.B, M.S. Li, and X.Z Liu and J.Q. Li. 2007. Comparisons of three recurrent selection methods in the improvement of maize populations. Agricultural Sciences in China. 6(6): 657-664.

Ruiz de Galarreta, J.I., and A. Alvarez. 2007. Six cycles of S1 recurrent selection in two Spanish maize synthetics. Spanish Journal of Agricultural Research. 5(2): 193-198.

Sajjad, M., N.U. Khan, S. Gul, S.U. Khan, I.H. Khalil, S.A. Khan, S. Ali, N. Ali, I. Tahir, Z. Bibi, S.M. Khan, and I. Hussain. 2020. Maize cyclical populations (PSEV3-C0, C1 and C2) response over diverse environments. International Journal of Agriculture and Biology. 24(6): 1656-1664.

Sukto, S., K. Lomthaisong, J. Sanitchon, S. Chankaew, M.P. Scott, T. Lubberstedt, K. Lertrat, and B. Suriharn. 2020. Variability in prolificacy, total carotenoids, lutein, and zeaxanthin of yellow small-ear waxy corn germplasm. International Journal of Agronomy. 2020: 8818768.

Sukto S., K. Lomthaisong, J. Sanitchon, S. Chankaew, S. Falab, T. Lübberstedt, K. Lertrat, and K. Suriharn. 2021. Breeding for prolificacy, total carotenoids and resistance to downy mildew in small-ear waxy corn by modified mass selection. Agronomy. 11: 1793.

Xiaoyang, W., C. Dan, L. Yuqing, L. Weihua, Y. Xinming, L. Xiuquan, D. Juan, and L. Lihui. 2017. Molecular characteristics of two new waxy mutations in China waxy maize. Molecular Breeding. 37: 27.

Zhou, Z., L. Song, X. Zhang, X. Li, N. Yan, R. Xia, H. Zhu, J. Weng, Z. Hao, D. Zhang, H. Yong, M. Li, and S. Zhang. 2016. Introgression of opaque2 into waxy maize causes extensive biochemical and proteomic changes in endosperm. Public Library of Science. 8: 1-16.