Effect of using black sesame meal (Sesamum indicum L.) replacing soybean meal on in vitro gas production kinetics and digestibility
Main Article Content
Abstract
Black sesame meal is a by-product of black sesame seeds that have been processed to extract sesame oil from sesame seeds. It contains 36% protein and 14% fat. Black sesame is an economic crop that is processed into sesame oil. After the oil is extracted, there will be sesame meal to sesame oil in a ratio of 4:1. Sesame residue left over from industrial plants is sold as animal feed raw material for 10–16 baht per kg. It is deemed a raw material source of protein that reduces animal feed costs. Therefore, this study aimed to investigate the effect of replacing soybean meal with black sesame meal on in vitro gas production kinetics and degradability. A completely randomized design (CRD) was used as an experimental design with 5 treatments consisting of black sesame meal replacing soybean meal in a concentrate diet at 0 (control group), 20, 40, 60, and 80%. It was found that the accumulated gas at 96 hours tended to increase when replacing black sesame meal with a higher ratio (P > 0.05). In vitro dry matter degradability (IVDMD) at 24 hours, replacing black sesame meal at 80%, increased degradability at 81.86% (P<0.05). In vitro organic matter degradability (IVOMD) at 24 hours after replacing black sesame meal at 80% had a reduced degradability of 80.26% (P>0.05). Based on the results, it could be summarized that replacing partial soybean meal with black sesame meal in diets can be used at 80%, which has the potential to be used as a source of protein in ruminant diets.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กัษมาพร ปัญต๊ะบุตร. 2555. งา ธัญพืชเพื่อสุขภาพ. วารสารอาหาร. 42: 297-301.
เยาวมาลย์ ค้าเจริญ, สาโรช ค้าเจริญ, เชิดชัย รัตนเศรษฐากุล, บัญญัติ เหล่าไพบูลย์, สุวิทย์ ธีรพันธ วัฒน์, อภิชัย ศิวประภากร, พิทักษ์ ศรีประยา, สมพงษ์ ฉายพุทธ, พรรณศรี สากิยะ และบุญตา ธรรมบุตร. 2531. การศึกษาการย่อยได้ของงาและกากเมล็ดงาในอาหารสัตว์เล็ก. น. 55-79. ใน การใช้วัสดุในท้องถิ่นเป็นอาหารสัตว์ รายงานการประชุมสัมมนาทาง วิชาการ โครงการอาหารสัตว์ ไทย-เยอรมัน ภาควิชาสัตวบาล คณะเกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่. 25-27 พฤษภาคม 2531 ณ จังหวัดเชียงราย.
สุชน ตั้งทวีวิพัฒน์ และบุญล้อม ชีวะอิสระกุล. 2538. ใช้กากงาทดแทนกากถั่วเหลืองใน อาหารไก่เนื้อ. วารสารเกษตร. 11: 27-38.
สุชน ตั้งทวีวิวัฒน์ และบุญล้อม ชีวะอิสระกุล. 2537. การใช้กากงาทดแทนกากถั่วเหลืองในอาหารสัตว์ปีก. คณะเกษตรศาสตร์มหาวิทยาลัยเชียงใหม่.
Aboul, E. S. S., M. S. Samy. S. U. Sherif, and F. A. Farid. 1986. Amino acids of some feed ingredients commonly used in poultry rations. Annals of Agricultural Sciences. (Cairo). 31: 1649-1662.
AOAC. 2019. Official Methods of Analysis of AOAC International. Gaithersburg, MD, USA: AOAC International.
Ashjae, V., A. Taghizadeh, Y. Mehmannavaz, and A. Nobakht. 2021. The Effects of replacement of soybean meal by mechanically‐processed sesame meal on performance and milk fatty acids profile in lactating Holstein dairy cows. Iranian Journal of Applied Animal Science. 11: 477-483.
Aziz‐Aliabadi, F., F. Amirzadeh‐Garou, A. Hassanabadi, and H. Noruzi. 2024. Investigating the effect of sesame meal replacement for soybean meal in diets with different levels of calcium and phytase enzyme in broiler chickens. Veterinary Medicine and Science. 10: article ID e1379.
Baghel, R. P. S., and S. P. Netke. 1987. Economic broiler ration based on vegetable proteins, Indian. Journal of Animal Physiology and Animal Nutrition. 4: 24-27.
Bell, D. E., A. A. Ibrahim, G. W. Denton, G. G. Long, and G. L. Bradley. 1990. An evaluation of sesame seed meal as a possible substitute for soybean oil meal for feeding broilers. Poultry Science. 69: 157-159.
Canale, A., R. M. Turi, and M. E. Valente. 1975. Apparent digestibility of the animo acids of sunflower and sesame oilmeals by hens. Rivista di Zootecnia e Veterinaria. 4: 335-343.
Cheva-Isarakul, B., and S. Tangtaweewipat. 1993. Sesame meal as soybean meal substitute in poultry diets II. Laying hen. Asian-Australasian Journal of Animal Sciences. 6: 253-258.
Cuca, M., and M. L. Sunde. 1967. Amino acid supplementation of a sesame meal diet. Poultry Science. 46: 1512-1516.
Eleazar, P. T., M. A. M. Héctor, E. R. J. Lizbeth, C. M. G. H. Mexico M. aría, O. E. Elba, V. B. P. EINAR, and G. R. Manuel. 2022. Effect of replacing soybean meal (Glycine max) with sesame meal (Sesamum indicum) in fattening lamb’s diets. Tropical Animal Health and Production. 54: article ID 405.
Ensminger, M. E., and Jr. C. G. Olentine. 1978. Feed and Nutrition, 1st Ed. The Ensminger Publishing Company. California, USA.
Foiklang, S., M. Wanapat, and T. Norrapoke. 2016. In vitro rumen fermentation and digestibility of buffaloes as influenced by grape pomace powder and urea treated rice straw supplementation. Animal Science Journal. 87: 370-377.
Ghorbani, B., A. T. Yansari, and A. J. Sayyadi. 2018. Effects of sesame meal on intake, digestibility, rumen characteristics, chewing activity and growth of lambs. South African Journal of Animal Science. 48: 151-161.
Hassan, O. E. M. 1974. Utilization of tropical feeding stuffs in the nutrition of modern commercial laying stock. Tropical Agriculture. 51: 569-573.
Hossain, M. A., and K. Jauncey. 1989. Studies on the protein, energy and amino acid digestibility of fish meal, mustard oilcake, linseed and sesame meal for common carp (Cyprinus carpio L.). Aquaculture. 83: 59-72.
Makkar, H. P. S., M. Blümmel, and K. Becker. 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. British Journal of Nutrition. 73: 897–913.
McDowell, R. E., and A. Hernandez-Urdaneta. 1975. Intensive systems for beef production in the tropics. Journal of Animal Science. 41: 1228-1237.
Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz, and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science. (Camb.). 92: 217-222.
National Research council (NRC). 1984. Nutrient requirements of poultry, 8thed. National Academy Press, Washington, DC., USA.
Obeidat, B. S., M. Ata, and H. S. Subih. 2022. Impacts of substituting soybean meal with cold extraction sesame meal on growth accomplishment and health in growing Awassi lambs. Tropical Animal Health and Production. 54: article ID 116.
Omer, H. A., S. M. Ahmed, S. S. Abdel-Magid, B. A. Bakry, M. F. El-Karamany, and E. H. El-Sabaawy. 2019. Nutritional impact of partial or complete replacement of soybean meal by sesame (Sesamum indicum) meal in lambs rations. Bulletin of the National Research Centre. 43: 1-10.
Ørskov, E. R., and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science. 92: 499-503.
SAS, 2004. User’s Guide: Statistics, Version 9.1 Edition. SAS. Inst, Inc., Cary, NC., U.S.A.
Shahizad, M., H. Amanlou, N. E. Farsuni, T. A. Farahani, and H. Khabazan. 2020. Effect of different levels of sesame meal on dry matter intake, milk production and composition, blood metabolites and apparent nutrient digestibility in early lactation Holstein cows. Animal Production. 22: 349-356.
Sommart, K. 1998. The use of cassava or ruminant feed. Ph. D. Thesis. University of Newcastle, Newcastle upon Tyne, England.
Tilley, J. M. A., and R. A. Terry. 1961. Technical "in vitro" para la determination de la digestibility forages. Publ. 6 Inst. Nac. Teen. Argiope Buenos Aires, pp. 1-5.
Trejo, E. P., H. M. A. Montemayor, L. E. R. Jimenez, M. C. M. G. Humarán, E. O. Estrada, J. H. Hernandez, and M. G. Ronquillo. 2022. Effect of replacing soybean meal (Glycine max) with sesame meal (Sesamum indicum) in fattening lamb’s diets. Tropical Animal Health and Production. 54: article ID 405.
Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber 329 and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74: 3583-359.
Yamazaki, M., and H. Kamata. 1986. Amino acid availability of feed ingredients for poultry. The Journal of Poultry Science. 23: 147-156.