Comparison of integrated fertilizer application technology in farmer field on yield and cost of sugarcane production in Udon Thani Province
Main Article Content
Abstract
Test and development of sugarcane production by integrated management (fertilizer management) increase yield in farmer’s fields in Udon Thani Province. This experiment was conducted during 2022 -2023. The objective of this study was to increase productivity and reduce costs by applying fertilizer according to soil analysis results in combination with bio-fertilizer (PGPR-3) in Hai Sok subdistrict, Ban Phue district, Udon Thani Province. The experiment compared 2 technologies of sugarcane production with 12 famers in 2022. Treatment 1 was based on the recommendation of the Department of Agriculture, Thailand. The fertilizer application was done according to soil analysis results in combination with bio-fertilizer (PGPR-3) 1 kg per rai. compared with treatment 2 famers’ practices by fertilizer application 15-15-15 rate 50 kg per rai and 16-8-8 rate 50 kg per rai. These were managed and followed up for 1st Ratoon in 2023. In 2023, study was conducted following the recommendation of the Department of Agriculture Thailand by fertilizer application according to soil analysis and reducing 25 % Nitrogen in combination with bio-fertilizer (PGPR-3) 1 kg per rai compared with treatment 2 famers’ practices. The study found that fertilizer application according to soil analysis in conjunction with bio-fertilizer (PGPR-3) following the recommendation of the Department of Agriculture Thailand increased yield higher than famers’ practices. Using chemical fertilizers based on soil analysis combined with 1 kg/rai of PGPR-3 biofertilizer increased sugarcane yield by 15.79%, resulting in a 22.22% increase in average net income. In ratoon cane, the yield increased by 25.20%, and net income rose by 29.10%, compared to the farmer's method under the same conditions in 2022–2023. In 2023, reducing nitrogen by 25% and applying 1 kg/rai of PGPR-3 biofertilizer increased planted cane yield by 10.82%, with a 15.78% increase in net income compared to the farmer's method.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กรมวิชาการเกษตร. 2559. ปุ๋ยชีวภาพพีจีพีอาร์-ทรี สำหรับอ้อย. คลังเอกสารความรู้ กรมวิชาการเกษตร. แหล่งข้อมูล: https://www.doa.go.th/share/showthread.php?tid=1287. ค้นเมื่อ 25 มีนาคม 2568.
กลุ่มเทคโนโลยีสารสนเทศและการสื่อสาร กองยุทธศาสตร์และแผนงาน. 2565. รายงานสถานการณ์การปลูกอ้อยปีการผลิต 2564/65. สำนักงานคณะกรรมการอ้อยและน้ำตาลทราย.
กลุ่มสารสนเทศการเกษตร สำนักงานเกษตรและสหกรณ์จังหวัดอุดรธานี. 2566. ข้อมูลพื้นฐานจังหวัดอุดรธานี.
กัลยากร โปร่งจันทึก. 2561. ปุ๋ยชีวภาพพีจีพีอาร์. กลุ่มวิจัยปฐพีวิทยา กองวิจัยพัฒนาปัจจัยการผลิตทางการเกษตร กรมวิชาการเกษตร.
พิกุลทอง สุอนงค์ วนิดา แหชัยภูมิ และสวัสดิ์ สมสะอาด. 2561. การเพิ่มผลผลิตและลดต้นทุนการผลิตอ้อย โดยใช้ปุ๋ยตามค่าวิเคราะห์ดินในพื้นที่นาไม่เหมาะสมในจังหวัดบุรีรัมย์. แก่นเกษตร. 46: 70–76.
ศุภกาญจน์ ล้วนมณี. 2567. การจัดการดิน ปุ๋ย และน้ำ เพื่อเพิ่มประสิทธิภาพการผลิตอ้อย. เอกสารวิชาการ กองวิจัยพัฒนาปัจจัยการผลิตทางการเกษตร กรมวิชาการเกษตร กระทรวงเกษตรและสหกรณ์.
Batool, T., S. Ali, M. F. Seleiman, N. H. Naveed, A. Ali, K. Ahmed, M. Abid, M. Rizwan, M. R. Shahid, M. Alotaibi, I. Al-Ashkar, and M. Mubushar. 2020. Plant growth promoting rhizobacteria alleviates drought stress in potation response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports. 10: article ID 16975.
Erturk, Y., S. Ercisli, A. Haznedar, and R. Cakmakci. 2010. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cutting. Biological Research. 43: 91-98.
Etesami, H., S. Emami, and H. A. Alikhani. 2017. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and the future prospects - a review. Journal of Soil Science and Plant Nutrition. 17: 897-911.
Goswami, M., and S. Deka. 2020. Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. Pedosphere. 30: 40-61.
Gouda, S., R. G. Kerry, G. Das, S. Paramithiotis, and H.-S. Shin. 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research. 206: 131-140.
Gray, E. J., and D. L. Smith. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant—bacterium signaling processes. Soil Biology and Biochemistry. 37: 395-412.
Ipek, M., L. Pirlak, A. Esitken, M. F. Dönmez, M. Turan, and F. Sahin. 2014. Plant growth-promoting rhizobacteria (PGPR) increase yield, growth and nutrition of strawberry under highcalcareous soil conditions. Journal of Plant Nutrition. 37: 990-1001.
Kloepper, J. W., and M. N. Schroth. 1981. Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology. 71: 1020-1024.
Kudoyarova, G., T. Arkhipova, T. Korshunova, M. Bakaeva, O. Loginov, and I. C. Dodd. 2019. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Frontiers in Plant Science. 10: article ID 1368.
Mekonnen, H., and M. Kibret. 2021. The roles of plant growth promoting rhizobacteria in sustainable vegetable production in Ethiopia. Chemical and Biological Technologies in Agriculture. 8: article ID 15.
Noumavo, P. A., E. Kochoni, Y. O. Didagbé, A. Adjanohoun, M. Allagbé, R. Sikirou, E. W. Gachomo, S. O. Kotchoni, and L. Baba-Moussa. 2013. Effect of different plant growth promoting rhizobacteria on maize seed germination and seedling development. American Journal of Plant Sciences. 4: 1013-1021.
Pereira, S. I. A., D. Abreu, H. Moreira, A. Vega, and P. M. L. Castro. 2020. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon. 6: article ID e05106.
Reddy, P. P. 2014. Plant Growth Promoting Rhizobacteria for Horticultural Crop Protection. New Delhi, India: Springer.
Vacheron, J., G. Desbrosses, M.-L. Bouffaud, B. Touraine, Y. Moënne-Loccoz, D. Muller, L. Legendre, F. Wisniewski-Dyé, and C. Prigent-Combaret. 2013. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science. 4: article ID 356.
Vijayabharathi, R., A. Sathya, and S. Gopalakrishnan. 2016. A renaissance in plant growth-promoting and biocontrol agents by endophytes. In D. P. Singh, H. B. Singh, and R. Prabha (Eds.), Microbial Inoculants in Sustainable Agricultural Productivity, Vol. 1: Research Perspectives (pp. 37-60). New Delhi, India: Springer.
Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil. 255: 571-568.
Tiwari, S., and C. Lata. 2018. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Frontiers in Plant Science. 9: article ID 452.
Zhang, F., N. Dashti, R. K. Hynes, and D. L. Smith. 1996. Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Annals of Botany. 77: 453-460.