Properties of resistant starch from cassava flour cv. Rayong 9 by acid hydrolysis

Main Article Content

Chalermwoot Sompark
Jarurat Pumprasert
Kritsadaphon Phonwong
Naruthep Wechpibal
Phatthara Loogruk

Abstract

Modification of starch to enhance resistant starch (RS) content has attracted growing interest because of its health benefits. Acid hydrolysis is considered a simple, safe, and scalable approach applicable to both smallholder and industrial production. However, its effectiveness in cassava flour remains unclear. This study aimed to investigate the potential of organic acid hydrolysis to produce RS-enriched cassava flour and evaluate its physicochemical properties for application in health-promoting food products. Cassava flours from three varieties recommended by the Department of Agriculture (Rayong 9, Rayong 11, and Rayong 15) were analyzed for yield, nutritional composition, and RS content. Rayong 9 exhibited the highest flour yield (28.60%), amylose content (26.27%), and RS content (3.84%). To further increase RS levels, Rayong 9 cassava flour was treated with citric acid and acetic acid at concentrations of 1.5, 2.0, and 2.5 M for 24 hours, compared with a control (distilled water). Treatments with 1.5–2.0 M acid slightly increased RS content, but the change was not statistically significant. Acid-hydrolyzed samples showed increased glossiness and brightness but reduced viscosity. Scanning electron microscopy revealed rougher starch granule surfaces compared to the control. Overall, the results indicate that organic acid hydrolysis is ineffective for enhancing RS content in cassava flour cv. Rayong 9, suggesting that alternative modification methods such as enzymatic or heat–moisture treatments should be further explored.

Article Details

How to Cite
Sompark, C., Pumprasert, J. ., Phonwong, K. ., Wechpibal , N. ., & Loogruk, P. (2025). Properties of resistant starch from cassava flour cv. Rayong 9 by acid hydrolysis. Khon Kaen Agriculture Journal, 53(5), 1099–1113. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/266123
Section
บทความวิจัย (research article)

References

สำนักงานนโยบายและยุทธศาสตร์การค้า กองนโยบายและยุทธศาสตร์การค้าสินค้าเกษตร. 2567. การศึกษาแนวทางการพัฒนาศักยภาพการค้า สำนักงานนโยบายและยุทธศาสตร์การค้า สินค้ามันสำปะหลัง. แหล่งข้อมูล: https://shorturl.at/EO6ct. ค้นเมื่อ 24 มกราคม 2568.

อัจฉรา ลิ่มศิลา, ดนัย ศุภาหาร, จรุงสิทธิ์ ลิ่มศิลา, ศุภชัย สารกาญจน์, สุนี ศรีสิงห์, อัมพร ยังโหมด, สมลักษณ์ จูฑังคะ, สมพงษ์ กาทอง, จิณณจาร์ หาญเศรษฐสุข, ประพิศ วองเทียม, จงรักษ์ จารุเนตร, วัลลีย์ อมรพลอุดม, จันทะมณี เอนก, สุวรรณหงส์ โอภาษ, บุญเส็ง เสาวรี, บำรุง อภิชาต, เมืองซอง เพียงเพ็ญ, ศรวัต วรยุทธ, ศิริชุมพันธ์ เมธี, คำหุ่ง วีระเด่น, วิจิตรจันทร์ สุชาติ, คำอ่อน ปิ่นแก้ว, ค้อชากุล วสันต์, วรรณจักรปรีชา แสงโสดา, พินิจ กัลยาศิลปิน, ปริญญา สีบุญเรือง, เสรีวัฒน์ จัตตุพรพงษ์, ธำรง เชื้อกิตติศักดิ์, ไชยยศ เพชระบูรณิน, สมศักดิ์ ทองศรี, วัฒนะ วัฒนานนท์ และธีรภัทร ศรีนรคุต. 2549. มันสำปะหลังพันธุ์ระยอง 9: พันธุ์ปริมาณแป้งสูงเพื่อผลิตเอทานอล. ศูนย์วิจัยพืชไร่ระยอง สถาบันวิจัยพืชไร่ กรมวิชาการเกษตร, กรุงเทพฯ.

AOAC. 2000. Official Methods of Analysis. 16th Edition. The Association of Official Analytical Chemists, Washington, DC.

Birt, D. F., T. Boylston, S. Hendrich, J. L. Jane, J. Hollis, L. Li, J. McClelland, S. Moore, G. J. Phillips, M. Rowling, K. Schalinske, M. P. Scott, and E. M. Whitley. 2013. Resistant starch: Promise for improving human health. Advances in Nutrition (Bethesda, Md.). 4: 587-601.

Cabrera-Canales, Z. E., G. Velazquez, M. L. Rodriguez-Marín, G. Méndez-Montealvo, J. Hernández-Ávila, E. Morales-Sánchez, and C. A. Gómez-Aldapa. 2020. Dual modification of achira (Canna indica L) starch and the effect on its physicochemical properties for possible food applications. Journal of Food Science and Technology. 58: 951-961.

Cardenas, O., and T. S. Buckle. 2006. Sour cassava starch production: A preliminary study. Journal of Food Science. 45: 1509-1512.

Castro-Campos, F. G., E. A. Esquivel-Fajardo, E. Morales-Sánchez, M. E. Rodríguez-García, O. Y. Barron-Garcia, C. F. Ramirez-Gutierrez, G. Loarca-Piña, and M. Gaytán-Martínez. 2024. Resistant starch type 5 formation by high amylopectin starch-lipid interaction. Foods. 13: 3888.

Cavallo, E., M. V. Tupa Valencia, E. Rossi, M. I. Errea, and M. L. Foresti. 2024. Production of resistant starches via citric acid modification: Effects of reaction conditions on chemical structure and final properties. International Journal of Biological Macromolecules. 278: 134922.

Chang, Q., B. Zheng, Y. Zhang, and H. A. Zeng. 2021. Comprehensive review of the factors influencing the formation of retrograded starch. International Journal of Biological Macromolecules. 186: 163-173.

Demirkesen, I., and B. Ozkaya. 2022. Recent strategies for tackling the problems in gluten-free diet and products. Critical Reviews in Food Science and Nutrition. 62: 571-597.

Fathima, A. A., M. Sanitha, L. Tripathi, and S. Muiruri. 2023. Cassava (Manihot esculenta) dual use for food and bioenergy: A review. Food and Energy Security. 12: e380.

Furukawaka, S., K. Tanaka, T. Masumura, Y. Ogihara, Y. Kiyokawa, and Y. Waka. 2006. Influence of rice proteins on eating quality of cooked rice and on aroma and flavor of sake. Cereal Chemistry. 83: 439-446.

Ghalambor, P., G. Asadi, A. Mohammadi Nafchi, and S. M. Seyedin Ardebili. 2022. Investigation of dual modification on physicochemical, morphological, thermal, pasting, and retrogradation characteristics of sago starch. Food Science and Nutrition. 10: 2285-2299.

Goldberg, R. N., N. Kishore, and R. M. Lennen. 2002. Thermodynamic quantities for the ionization reactions of buffers. Journal of Physical and Chemical Reference Data. 31: 231-370.

Gonzalez, A., and Y. Wang. 2023. Effects of acid hydrolysis level prior to heat-moisture treatment on properties of starches with different crystalline polymorphs. LWT-Food Science and Technology. 187: 115302.

Huo, Y., B. Zhang, M. Niu, C. Jia, S. Zhao, Q. Huang, and H. Du. 2018. An insight into the multi-scale structures and pasting behaviors of starch following citric acid treatment. International Journal of Biological Macromolecules. 116: 793-800.

Isra, M., D. Andrianto, and R. Setiarto. 2022 Effect of lintnerization (acid hydrolysis) on resistant starch levels and prebiotic properties of high carbohydrate foods: A meta-analysis study. Songklanakarin Journal of Science and Technology. 44: 1331–1338.

Javadian, N., A. Mohammadi Nafchi, and M. Bolandi. 2021. The effects of dual modification on functional, microstructural, and thermal properties of tapioca starch. Food Science and Nutrition. 9: 5467-5476.

Juliano, B. O. 1971. A simplified assay for milled-rice amylose. Cereal Science Today. 16: 334-340.

Lee, S. H., W. Y. Huang, J. Hwang, H. Yoon, W. Heo, J. Hong, M. J. Kim, C. S. Kang, B. K. Han, and Y. J. Kim. 2023. Characteristics of amylose-lipid complex prepared from pullulanase-treated rice and wheat flour. Food Science and Biotechnology. 33: 1113-1122.

Lin, T. I., Y. H. Lee, and Y. C. Chen. 1993. Capillary electrophoretic analysis of inorganic cations. Role of complexing agent and buffer pH. Journal of Chromatography A. 654: 167-176.

Lutfi, Z., A. Nawab, F. Alam, and A. Hasnain. 2017. Morphological, physicochemical, and pasting properties of modified water chestnut (Trapa bispinosa) starch. International Journal of Food Properties. 20: 1016-1028.

Marta, H., and T. Tensiska. 2017. Functional and amylographic properties of physically-modified sweet potato starch. KnE Life Sciences. 2: 689-700.

Martinez-Ortiz, M. A., A. Vargas-Torres, A. D. Román-Gutiérrez, N. Chavarría-Hernández, P. B. Zamudio-Flores, M. Meza-Nieto, and H. M. Palma-Rodríguez. 2017. Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch. International Journal of Biological Macromolecules. 98: 341-347.

McCleary, B. V., and D. A. Monaghan. 2002. Measurement of resistant starch. Journal of AOAC International. 85: 665-675.

Mendez-Montealvo, G., G. Velazquez, H. A. Fonseca-Florido, E. Morales-Sanchez, and A. Soler. 2022. Insights on the acid hydrolysis of achira (Canna edulis) starch: Crystalline and double-helical structure changes impacting functionality. LWT-Food Science and Technology. 153: 112509.

Ogbo, F., and E. N. Okafor. 2015. The resistant starch content of some cassava based Nigerian foods. Nigerian Food Journal. 33: 29-34.

Parajára, M. C., Z. Colombet, I. E. Machado, M. C. Menezes, E. Verly-Jr, M. O'Flaherty, and A. L. Meireles. 2023. Mortality attributable to diets low in fruits, vegetables, and whole grains in Brazil in 2019: Evidencing regional health inequalities. Public Health. 224: 123-130.

Pereira, D. G., and A. D. P. Beleia. 2021. Characterization of acid-thinned cassava starch and its technological properties in sugar solution. LWT-Food Science and Technology. 151: 112151.

Pratiwi, M., D. N. Faridah, and H. N. Lioe. 2018. Structural changes to starch after acid hydrolysis, debranching, autoclaving-cooling cycles, and heat moisture treatment (HMT): A review. Starch-Starke. 70: 1700028.

Punia Bangar, S., K. V. Sunooj, M. Navaf, Y. Phimolsiripol, and W. S. Whiteside. 2024. Recent advancements in cross-linked starches for food applications - A review. International Journal of Food Properties. 27: 411-430.

Sandhu, K. S., N. Singh, and S. T. Lim. 2007. A comparison of native and acid thinned normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties. LWT-Food Science and Technology. 40: 1527-1536.

Shaikh, F., T. M. Ali, G. Mustafa, and A. Hasnain. 2019. Comparative study on effects of citric and lactic acid treatment on morphological, functional, resistant starch fraction and glycemic index of corn and sorghum starches. International Journal of Biological Macromolecules. 135: 314-327.

Sharmin, N., J. T. Rosnes, L. Prabhu, U. Böcker, and M. Sivertsvik. 2022. Effect of citric acid cross linking on the mechanical, rheological and barrier properties of chitosan. Molecules. 27: 5118.

Simón, E., M. Molero-Luis, R. Fueyo-Díaz, C. Costas-Batlle, P. Crespo-Escobar, and M. A. Montoro-Huguet. 2023. The gluten-free diet for celiac disease: Critical insights to better understand clinical outcomes. Nutrients. 15: 4013.

Sriburi, P., and S. E. Hill. 2000. Extrusion of cassava starch with either variations in ascorbic acid concentration or pH. International Journal of Food Science and Technology. 35: 141-154.

Sun, R., C. Chao, J. Yu, L. Copeland, and S. Wang. 2024. Type 5 resistant starch can effectively alleviate experimentally induced colitis in mice by modulating gut microbiota. Journal of Agricultural and Food Chemistry. 73: 2103-2113.

Tappiban, P., S. Sraphet, N. Srisawad, S. Ahmed, J. Bao, and K. Triwitayakorn. 2024. Cutting-edge progress in green technologies for resistant starch type 3 and type 5 preparation: An updated review. Food Chem: X. 23: 101669.

Wang, J. L., Y. S. Chen, K. C. Huang, C. H. Yeh, M. C. Chen, L. S. Wu, and Y. H. Chiu. 2024. Resistant starch-encapsulated probiotics attenuate colorectal cancer cachexia and 5-fluorouracil-induced microbial dysbiosis. Biomedicines. 12: 1450.

Wang, M., C. Yang, Q. Wang, J. Li, Y. Li, X. Ding, P. Huang, H. Yang, and Y. Yin. 2022. Effects of dietary amylose - amylopectin ratio on growth performance and intestinal digestive and absorptive function in weaned piglet response to lipopolysaccharide. Animals. 12: 1833.

Yu, Y., H. Yang, W. Cheng, C. Gao, L. Zheng, and Q. Xin. 2020. Effect of acetic acid concentration on functional group and microcrystalline structure of bituminous coal. Fuel. 288: 119711.