Development of DNA markers associated with early heading date in F2 populations of RD41 rice variety and KDML 105 photoperiod-insensitive, semi-dwarf rice line. (KDML 105-PISD)
Main Article Content
Abstract
The heading date of rice is a key trait affecting its adaptation and growing season. It is regulated by multiple genetic loci and influenced by environmental factors, especially photoperiod length. This study aimed to develop DNA markers associated with an early heading date in an F2 population derived from a cross between the RD41 rice variety and the photoperiod-insensitive, semi-dwarf KDML 105-PISD rice line. Whole genome sequencing (WGS) was performed on the female and male parent rice cultivars to analyze and identify variations in single nucleotide polymorphisms (SNPs) and insertion/deletion (InDel) positions within the exons of genes involved in controlling heading date at 56 loci. A set of 20 gene markers was identified and developed, enabling a clear distinction between the homozygous alleles of either the female or male parent and the heterozygous alleles combining alleles from both parents. DNA markers were subsequently used to establish a correlation with the early heading date of the F2 population under both NLD and NSD conditions. Through the simple regression analysis, it was observed that the genotypes of DNA markers located at the RFT1 gene exhibited the highest relationship with the early heading date, achieving the coefficient of determination (R-squared; R2) value of 36.52% in NLD and
17.88% in NSD. Analyzed by the multiple regression method, between DNA markers and early heading date, it was found that the genotypes of DNA markers of the RFT1, Hd2, OsDof12 and OsCOL9 genes model were related with early heading date, the R2 value was 61.06% in NLD. While the genotypes of DNA markers of RFT1, Hd6, OsCOL9 and OsDof12 genes model were related to early heading date, the R2 value was 44.54% in NSD. The identified DNA markers can improve breeding efficiency for early heading rice when combined with conventional methods.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กองวิจัย และพัฒนากรมการข้าว. 2559. พันธุ์ข้าว. แหล่งข้อมูล: http://webold.ricethailand.go.th/rkb3/title-index.php-file=content.php&id=121.htm. ค้นเมื่อ 7 มีนาคม 2568.
ปฐมพร อินชนบท, ยุพเยาว์ คบพิมาย, กฤษณะ ลาน้ำเที่ยง และวราภรณ์ แสงทอง. 2567. การพัฒนาเครื่องหมายโมเลกุลที่สัมพันธ์กับอายุวันออกดอกสั้นในประชากร F2 ของพันธุ์ข้าว กข79 กับสายพันธุ์ กข43 ข้าวเหนียวหอม. วารสารแก่นเกษตร. 52: 321-340.
ประยูรศรี บุตรแสนคม. 2555. การคัดเลือกตัวแปรพยากรณ์เข้าในสมการถดถอยพหุคูณ. แหล่งข้อมูล: file:///C:/Users/Acer/ Downloads/chitpon,+Journal+manager,+242%20(3).pdf. ค้นเมื่อ 16 มีนาคม 2568.
วราภรณ์ แสงทอง, ศุภางค์ ทิพย์พิทักษ์, วิลาวรรณ ศิริพูนวิวัฒน์, ประทีป พิณตานนท์, สมเกียรติ วัฒกวิรานต์ และนลินี รุ่งเรืองศรี. 2551. การพัฒนาเครื่องหมายโมเลกุลเพื่อคัดเลือกแอลลีล Hd1 ของข้าวพันธุ์ กข 6 และ แอลลีล hd1 ของข้าวพันธุ์ Taichung 65. วารสารเกษตรพระจอมเกล้า. 26: 37-47.
ศูนย์วิจัยข้าวชัยนาท. 2565. กข95 (ดกเจ้าพระยา). แหล่งข้อมูล: https://cnt-rrc.ricethailand.go.th/page/18749. ค้นเมื่อ 19 พฤษภาคม 2568.
ศูนย์วิจัยข้าวชัยนาท. 2567. ข้าวขาวพื้นแข็ง กข107. แหล่งข้อมูล: https://cnt-rsc.ricethailand.go.th/page/48296. ค้นเมื่อ 19 พฤษภาคม 2568.
สมาคมดาราศาสตร์ไทย. 2564. เวลาดวงอาทิตย์ และดวงจันทร์ขึ้น-ตก พ.ศ. 2564 - จังหวัดเชียงใหม่. แหล่งข้อมูล: https://thaiastro. nectec.or.th/skyevnt/sunmoon/2021/chiangmai.html. ค้นเมื่อ 7 มีนาคม 2568.
สำนักงานนโยบาย และยุทธศาสตร์การค้า กระทรวงพาณิชย์. 2567. การศึกษาแนวทางการสร้างเสถียรภาพการค้าสินค้าข้าว. แหล่งข้อมูล: https://uploads.tpso.go.th/67-การศึกษาแนวทางการสร้างเสถียรภาพการค้าสินค้าข้าว%20กษ..pdf. ค้นเมื่อ 7 มีนาคม 2568.
สุชาติ นักปราชญ์, สุนิยม ตาปราบ, โอภาส วรวาท, กษิณ ขำเลขะสิงห์, สุรินทร์ ไตรติลานันท์, สาธิต ทยาพัชร, ลือชัย อารยะรังสฤษฏ์, เกษม สุนทราจารย์, วาสนา พันธุ์เพ็ง, กิ่งแก้ว คุณเขต, กัญญา เชื้อพันธุ์, สุนันทา วงศ์ปิยะชน, สุภาวิณี แสงโชติ, อภิชาติ ลาวัณย์ประเสริฐ, อดุลย์ กฤษวะดี, เฉลิมชาติ ฤาไชยคาม, สุภาพร จันทร์บัวทอง, อัญชลี ประเสริฐศักดิ์, สุรพล จัตุพร, รชฏ พันธุ์พิทย์แพทย์, กาญจนา กล้าแข็ง, สมหมาย ศรีวิสุทธิ์, บังอร ธรรมสามิสรณ์, สุรพงศ์ โพธิพิบูลย์ และนิตยา รื่นสุข. 2552. SPR99007-22-1-2-2-1 สายพันธุ์ข้าวอายุสั้นสำหรับนาชลประทาน. น. 11-19. ใน: ประชุมวิชาการข้าวและธัญพืชเมืองหนาว ประจำปี 2552. สำนักวิจัยและพัฒนาข้าว กรมการข้าว, กรุงเทพฯ.
สุภมาส อังศุโชติ. 2556. การวิเคราะห์ข้อมูลวิจัยเพื่อพัฒนาการเรียนการสอน. เจริญดีมั่นคงการพิมพ์, กรุงเทพฯ.
Aryanti, A., I. Dwimahyani, and I. Ishak. 2017. Identification of heading date six (Hd6) gene derived from rice mutant varieties. Biosaintifika: Journal of Biology and Biology Education. 9: 105-113.
Bocianowski, J. 2012. The use of weighted multiple linear regression to estimate QTL-by-QTL epistatic effects. Genetics and Molecular Biology. 35: 802-809.
Cai, M., S. Chen, M. Wu, T. Zheng, L. Zhou, C. Li, H. Zhang, J. Wang, X. Xu, J. Chai, Y. Ren, X. Guo, X. Zhang, C. Lei, Z. Cheng, J. Wang, L. Jiang, H. Zhai, H. Wang, S. Zhu, and J. Wan. 2019. Early heading 7 interacts with DTH8, and regulates flowering time in rice. Plant Cell Reports. 38: 521-532.
Chardon, F., and C. Damerval. 2005. Phylogenomic analysis of the PEBP gene family in cereals. Journal of Molecular Evolution. 61: 579-590.
Conrad, L. J., I. Khanday, C. Johnson, E. Guiderdoni, G. An, U. Vijayraghavan, and V. Sundaresan. 2014. The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice. The Plant Journal. 80: 883-894.
Doi, K., T. Izawa, T. Fuse, U. Yamanouchi, T. Kubo, Z. Shimatani, M. Yano, and A. Yoshimura. 2004. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-Iike gene expression independently of Hd1. Genes & Development. 18: 926-936.
Du, A., W. Tian, M. Wei, W. Yan, H. He, D. Zhou, X. Huang, S. Li, and X. Ouyang. 2017. The DTH8-Hd1 module mediates day-length-dependent regulation of rice flowering. Molecular plant. 10: 948-961.
Fujino, K., U. Yamanouchi, and M. Yano. 2013. Roles of the Hd5 gene controlling heading date for adaptation to the north ern limits of rice cultivation. Theoretical and Applied Genetics. 126: 611-618.
Gao, H., M. Jina, X. M. Zhenga, J. Chena, D. Yuanc, Y. Xinc, M. Wangd, D. Huange, Z. Zhanga, K. Zhoub, P. Shenga, J. Maa, W. Maa, H. Dengc, L. Jiangb, S. Liub, H. Wanga, C. Wua, L. Yuanc, and J. Wana. 2014. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proceedings of the National Academy of Sciences of the United States of America. 111: 16337-16342.
Griffiths, S., R. P. Dunford, G. Coupland, and D. A. Laurie. 2003. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiology. 131: 1855-1867.
Hagiwara, W.E., N. Uwatoko, A. Sasaki, K. Matsubara, H. Nagano, K. Onishi, and Y. Sano. 2009. Diversification in flowering time due to tandem FT-like gene duplication, generating novel Mendelian factors in wild and cultivated rice. Molecular Ecology. 18: 1537-1549.
Han, S. H., S. C. Yoo, B. Doo Lee, G. An, and N. C. Paek. 2015. Rice FLAVINBINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod. Plant, Cell & Environment. 38: 2527–2540.
Hayama, R., S. Yokoi, S. Tamaki, M. Yano, and K. Shimamoto. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature. 422: 719-722.
Hori, K., E. O. Tanaka, K. Matsubara, U. Yamanouchi, K. Ebana, and M. Yano. 2013. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. The Plant Journal. 76: 36-46.
Huang, Y., Z. Han, N. Cheng, M. Luo, X. Bai, and Y. Xing. 2020. Minor effects of 11 Dof family genes contribute to the missing heritability of heading date in rice (Oryza sativa L.). Frontiers in Plant Science. 10: 1739.
Ishikawa, R., M. Aoki, K. Kurotani, S. Yokoi, T. Shinomura, M. Takano, and K. Shimamoto. 2011. Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Molecular Genetics and Genomics. 285: 461–470.
Itoh, H., Y. Tanaka, and T. Izawa2. 2019. Genetic relationship between phytochromes and OsELF3-1 reveals the mode of regulation for the suppression of phytochrome signaling in rice. Plant and Cell Physiology. 60: 549-561.
Jiang, P., S. Wang, H. Jiang, B. Cheng, K. Wu, and Y. Dinga. 2018. The COMPASS-like complex promotes flowering and panicle branching in rice. Plant Physiol. 176: 2761–2771.
Kim, S. L., S. Lee, H. J. Kim, H. G. Nam, and G. An. 2007. OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiology. 145: 1484-1494.
Kim, S. K., C. H. Yun, J. H. Lee, Y. H. Jang, H. Y. Park, and J. K. Kim. 2008. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta. 228: 355-365.
Kojima, S., Y. Takahashi, Y. Kobayashi, L. Monna, T. Sasaki, T. Araki, and M. Yano. 2002. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant and Cell Physiology. 43: 1096-1105.
Komiya R., A. Ikegami, S. Tamaki, S. Yokoi, and K. Shimamoto. 2008. Hd3a and RFT1 are essential for flowering in rice. Development. 135: 767-774.
Komiya, R., S. Yokoi, and K. Shimamoto. 2009. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development. 136: 3443-3450.
Koo, B. H., S. C. Yooa, J. W. Parka, C. T. Kwona, B. D. Leea, G. Anb, Z. Zhangc, J. Lic , Z. Lic, and N. C. Paeka. 2013. Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Molecular Plant. 6: 1877-1888.
Lee, S., J. Kim, J. J. Han, M. J. Han, and G. An. 2004. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. The Plant Journal. 38: 754-764.
Lee, Y. S., and G. An. 2015. Complex regulatory networks of flowering time in rice. Rice Research. 3: 23.
Lee, Y. S., D. H. Jeong, D. Y. Lee, J. Yi, C. H. Ryu, S. L. Kim, and G. An. 2010. OsCOL4 is a constitutive flowering repressor upstream Ehd1 and downstream of OsphyB. The Plant Journal. 63: 18-30.
Lee, Y. S., J. Yi, and G. An. 2016. OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B. Plant molecular biology. 91: 413–427.
Li, D., C. Yang, X. Li, Q. Gan, X. Zhao, and L. Zhu. 2009. Functional characterization of rice OsDof12. Planta. 229 :1159-1169.
Li, X., Y. Sun, X. Tian, Y. Ren, J. Tang, Z. Wang, Y. Cheng, and Q. Bu. 2018. Comprehensive identification of major flowering time genes and their combinations, which determined rice distribution in Northeast China. Plant Growth Regulation. 84: 593-602.
Lin, H. X., T. Yamamoto, T. Sasaki, and M. Yano. 2000. Characterization and detection of epistatic interactions of three QTLs, Hd1, Hd2 and Hd3, controlling heading date in rice using nearly isogenic lines. Theoretical and Applied Genetics. 101: 1021-1028.
Liu, H., S. Dong, D. Sun, W. Liu, F. Gu, Y. Liu, T. Guo, H. Wang, J. Wang, and Z. Chen. 2016. CONSTANS-like 9 (OsCOL9) interacts with receptor for activated C-kinase 1(OsRACK1) to regulate blast resistance through salicylic acid and ethylene signaling pathways. Public Library of Science ONE. 11: e0166249.
Liu, K., Y. Yu, A. Dong, and W. H. Shen. 2017. SET DOMAIN GROUP701 encodes a H3K4-methytransferase and regulates multiple key processes of rice plant development. New Phytologist. 215: 609–623.
Liu, X., C. Zhou, Y. Zhao, S. Zhou, and W. Wang. 2014. The rice enhancer of zeste [E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time. Frontiers in Plant Science. 5: 591.
Matsubara, K, U. Yamanouchi, Z. X. Wang, Y. Minobe, and T. Izawa. 2008. Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiology. 148: 1425-1435.
Matsubara, K., U. Yamanouchi, Y. Nonoue, K. Sugimoto, Z. X. Wang, Y. Minobe, and M. Yano. 2011. Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. The Plant Journal. 66: 603–612.
Monna L, X. Lin, S. Kojima, T. Sasaki, and M. Yano .2002. Geneticdissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading datein rice. Theor Appl Genet. 104: 772–778.
Murakami, M., A. Matsushika, M. Ashikari, T. Yamashino, and T. Mizuno. 2005. Circadian-associated rice pseudo response regulators (Os PRRs): insight into the control of flowering time. Bioscience, Biotechnology, and Biochemistry. 69: 410-414.
Nemoto, Y., Y. Nonoue, M. Yano, and T. Izawa. 2016. Hd1, a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot‐specific CCT‐domain protein Ghd7. The Plant Journal. 86: 221-233.
Ng, D. W., T. Wang, M. B. Chandrasekharan, R. Aramayo, and S. Kerbundit. 2007. Plant SET domain-containing proteins: Structure, function and regulation. Biochimica et Biophysica Acta. 1769: 316-329.
Ogiso-Tanaka, E., K. Matsubara, S. Yamamoto, Y. Nonoue, J. Wu, H. Fujisawa, H. Ishikubo, T. Tanaka, T. Ando, T. Matsumoto, and M. Yano. 2013. Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice. Public Library of Science ONE. 8: e75959.
Panahi, B., H. M. Jalaly, and R. Hamid. 2024. Using the next-generation sequencing approach for the discovery and characterization of molecular plant markers. Current Plant Biology: 100412.
Park, S. J., S. L. Kim, S. Lee, B. I. Je, and H. L. Piao. 2008. Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. The Plant Journal. 56: 1018-1029.
Peng, L. T., Z. Y. Shi, L. Li, G. Z. Shen, and J. L. Zhang. 2007. Ectopic expression of OsLFL1 in rice represses Ehd1 by binding on its promoter. Biochemical and biophysical research communications. 360: 251-256.
Peng, L. T., Z. Y. Shi, L. Li, G. Z. Shen, and J. L. Zhang. 2008. Overexpression of transcription factor OsLFL1 delays flowering time in Oryza sativa. Journal of Plant Physiology. 165: 876-885.
Qin, F. J., Q. W. Sun, L. M. Huang, X. S. Chen, and D. X. Zhou. 2010. Rice SUVH histone methyltransferase genes display specific functions in chromatin modification and retrotransposon repression. Molecular plant. 3:773–782.
Ryu, C. H., S. Lee, L. H. CHO, S. L. Kim, Y. S. LEE, S. C. Choi, and G. An. 2009. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant, Cell & Environment. 32: 1412-1427.
Shibaya T, K. Hori, E. Ogiso-Tanaka, U. Yamanouchi, K. Shu, N. Kitazawa, A. Shomura, T. Ando, K. Ebana, J. Wu, T. Yamazaki, and M. Yano. 2016. Hd18, Encoding histone acetylase related to Arabidopsis FLOWERING LOCUS D, is involved in the control of flowering time in rice. Plant Cell Physiol. 57: 1828–1838.
Sui, P., J. Jin, S. Ye, C. Mu, J. Gao, H. Feng, W. H. Shen, Y. Yu, and A. Dong. 2012. H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. The Plant Journal. 70: 340–347.
Sun, C. H., J. Fang, T. L. Zhao, B. Xu, F. T. Zhang, L. C. Liu, J. Y. Tang, G. F. Zhang, X. J. Deng, F. Chen, Q. Qian, X. F. Cao, and C. C. Chu. 2012. The histonemethyl transferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice. The Plant Cell. 24: 3235–3247.
Takahashi, Y., A. Shomura, T. Sasaki, and M. Yano. 2001. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proceedings of the National Academy of Sciences. 98: 7922-7927.
Takano, M., N. Inagaki, X. Xie, N. Yuzurihara, F. Hihara, T. Ishizuka, M. Yano, M. Nishimura, A. Miyao, and H. Hirochika. 2005. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. The Plant Cell. 17: 3311-3325.
Tanaka, N., M. Shenton, Y. Kawahara, M. Kumagai, H. Sakai, H. Kanamori, J. Yonemaru, S. Fukuoka, K. Sugimoto, and M. Ishimoto. 2020. Whole-genome sequencing of the NARO World Rice Core Collection (WRC) as the basis for diversity and association studies. Plant and Cell Physiology. 61: 922-932.
Terauchi, R., A. Abe, H. Takagi, K. Yoshida, S. Kosugi, S. Natsume, and M. Tamiru. 2012. Whole genome sequencing and future breeding of rice. Journal of Plant Biochemistry and Biotechnology. 21: 10-14.
Tsuji, H., S. Tamaki, R. Komiya, and K. Shimamoto. 2008. Florigen and the photoperiodic control of flowering in rice. Rice 1: 25-35.
Vergard, B. S., and T. T. Chang. 1985. The flowering response of the rice plant to photoperiod a review of the literature. 4th edition. The International Rice Research Institute, Los Banos Laguna, Philippines.
Wei, H., X. Wang, H. Xu, and L. Wang. 2020. Molecular basis of heading date control in rice. Abiotech. 1: 219-232.
Wei, X., J. Xu, H. Guo, L. Jiang, S. Chen, and C. Yu. 2010. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant physiology. 153: 1747-1758.
Wu, C. Y., C. J. You, C. S. Li, T. Long, and G. X. Chen. 2008. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proceedings of the National Academy of Sciences. 105: 12915-12920.
Wu, Q., D. Li, D. Li, X. Liu, X. Zhao, X. Li, and L. Zhu. 2015. Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.). Frontiers in Plant Science. 6: 833.
Xie, S., M. Chen, R. Pei, Y. Quyang, and J. Yao. 2015. OsEMF2b acts as a regulator of flowering transition and floral organ identity by mediating H3K27me3 deposition at OsLFL1 and OsMADS4 in rice. Plant Molecular Biology Reporter. 33: 121-132.
Xue, W., Y. Xing, X. Weng, Y. Zhao, W. Tang, L. Wang, H. Zhou, S. Yu, C. Xu, X. Li, and Q. Zhang. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics. 40: 761-767.
Yan, W., H. Liu, X. Zhou, Q. Li, J. Zhang, L. Lu, T. Liu, H. Liu, C. Zhang, and Z. Zhang, 2013. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Research. 23: 969-971.
Yang, J., S. Lee, R. Hang, S. R. Kim, and Y. S. Lee. 2013a. OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. The Plant Journal. 73: 566-578.
Yang, Y., Q. Peng, G. X. Chen, X. H. Li, and C. Y. Wu. 2013b. OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Molecular Plant. 6: 202–215.
Yano, M., and T. Sasaki. 1997. Genetic and molecular dissection of quantitative traits in rice. Oryza: from molecule to plant. Plant Molecular Biology. 35: 145-153.
Zhang, H., S. Zhu, T. Liu, C. Wang, Z. Cheng, X. Zhang, and J. Wan. 2019. DELAYED HEADING DATE 1 interacts with OsHAP5C/D, delays flowering time and enhances yield in rice. Plant Biotechnology Journal. 17: 531-539.
Zhao, X. L., Z. Y. Shi, L. T. Peng, G. Z. Shen, and J. L. Zhang. 2011. An atypical HLH protein OsLF in rice regulates flowering time and interacts with OsPIL13 and OsPIL15. New Biotechnology. 28: 788-797.
Zhao, J. M., X. Huang, X. H. Ouyang, W. L. Chen, A. P. Du, L. Zhu, S. G. Wang, X. W. Deng, and S. G. Li. 2012. OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering. Public Library of Science ONE. 7: e43705.
Zhou, S., Z. Shanshan, C. Song, H. Haigang, W. Haoqin, H. Benyuan, C. Liang, X. Zhuang, L. Linglong, J. Ling, W. Haiyang, and W. Jianmin. 2021. Transcriptional and posttranscriptional regulation of heading date in rice. New Phytologist. 230: 943-956.
Zhu, C. M., Q. Peng, D. B. Fu, D. X. Zhuang, Y. M. Yu, M. Duan, W. B. Xie, Y. H. Cai, Y. D. Ouyan, X. M. Lian, and C. Y. Wu. 2018. The E3 ubiquitin ligase HAF1 modulates circadian accumulation of EARLY FLOWERING3 to control heading date in rice under long-day conditions. The Plant Cell. 30: 2352–2367.
Zhu, S., J. Wang, M. Cai, H. Zhang, F. Wu, Y. Xu, C. Li, Z. Cheng, X. Zhang, and X. Guo. 2017. The OsHAPL1-DTH8-Hd1 complex functions as the transcription regulator to repress heading date in rice. Journal of Experimental Botany. 68: 553-568.