Comparative evaluation of post-thawed frozen semen quality of American Brahman and Charolais bulls using Computer-Assisted Sperm Analysis (CASA)

Main Article Content

Yaowalak Wangsuk
Wannaluk Thaworn
Phacharaporn Tadee
Patcharee Promtan
Nittaya Thongtip
Pakasinee Khaodang
Wiwat Pattanawong

Abstract

This study aimed to compare the post-thaw quality of frozen semen from American Brahman and Charolais bulls using Computer-Assisted Sperm Analysis (CASA). Frozen semen from 8 American Brahman and 8 Charolais bulls, with 10 straws per bull, was thawed at 37 °C for 30 seconds and evaluated for total motility, progressive motility, sperm morphology, and kinematic parameters, including linearity, beat-cross frequency, amplitude of lateral head displacement, and the ratio of straight-line velocity to curvilinear velocity. The results showed that sperm from American Brahman bulls had significantly higher progressive motility and linearity compared to Charolais bulls (P<0.05), whereas Charolais bulls exhibited significantly higher beat-cross frequency than American Brahman bulls (P<0.05). No significant differences were observed in total motility or other evaluated parameters (P>0.05). These findings indicate some breed-specific differences in post-thaw semen quality, which can be used to support the selection of suitable sires for artificial insemination and genetic improvement of beef cattle under tropical conditions in Thailand.

Article Details

How to Cite
Wangsuk, Y., Thaworn, W. ., Tadee, P. ., Promtan, P. ., Thongtip, N. ., Khaodang, P. ., & Pattanawong, W. . (2026). Comparative evaluation of post-thawed frozen semen quality of American Brahman and Charolais bulls using Computer-Assisted Sperm Analysis (CASA) . Khon Kaen Agriculture Journal, 54(1), 54–65. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/267809
Section
บทความวิจัย (research article)
Author Biography

Yaowalak Wangsuk, Faculty of Animal Science and Technology Maejo University

Ms. Yaowalak Wangsuk, born on 25/11/2001, graduated with a bachelor's degree from the Faculty of Animal Science and Technology, Maejo University.

References

กรมปศุสัตว์. 2560 ประกาศกรมปศุสัตว์ เรื่อง การรับคืน และผลคืนใช้เชื้อสำหรับผสมพันธุ์สัตว์ พ.ศ. 2560. กระทรวงเกษตรและสหกรณ์.

Amann, R. P., and D. Waberski. 2014. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology. 81: 5-17.

Baştan, İ. 2024. Comparison of computer-assisted sperm analysis and smartphone-applied sperm analysis for evaluation of frozen-thawed bull semen. Reproduction in Domestic Animals. 59: e14695.

Bearden, H. J., and J. W. Fuquay. 1984. Applied Animal Reproduction. Prentice-Hall, Inc., Englewood Cliffs, NJ.

Behnam, M., R. Asadpour, T. R. Topraggaleh, and H. Hamali. 2023. Improvement of post-thaw quality and fertilizing ability of bull spermatozoa using Rho kinase inhibitor in freezing extender. Frontiers in Veterinary Science. 10: 1155048.

Brito, L., A. Silva, L. Rodrigues, F. Vieira, L. Deragon, and J. Kastelic. 2002. Effects of environmental factors, age and genotype on sperm production and semen quality in Bos indicus and Bos taurus AI bulls in Brazil. Animal Reproduction Science. 70: 181-190.

Budworth, P. R., R. P. Amann, and P. L. Chapman. 1988. Relationships between computerized measurements of motion of frozen-thawed bull spermatozoa and fertility. Journal of Andrology. 9: 41–54.

Celeghini, E. C. C., R. De Arruda, A. De Andrade, J. Nascimento, and C. Raphael. 2007. Practical techniques for bovine sperm simultaneous fluorimetric assessment of plasma, acrosomal and mitochondrial membranes. Reproduction in Domestic Animals. 42: 479–488.

Chatterjee, S., E. de Lamirande, and C. Gagnon. 2001. Cryopreservation alters membrane sulfhydryl status of bull spermatozoa: protection by oxidized glutathione. Molecular Reproduction and Development: Incorporating Gamete Research. 60: 498–506.

Chenoweth, P. J. 2005. Genetic sperm defects. Theriogenology. 64: 457–468.

Davila, R., R. A. Ledezma-Torres, J. G. Soto, U. Macias-Cruz, J. F. Calderón-Cortés, L. Avendaño-Reyes, and A. Correa-Calderón. 2021. Influence of environmental stressors on reproductive efficiency in cattle. Tropical Animal Health and Production. 53: 407.

Farrell, P., G. Presicce, C. Brockett, and R. Foote. 1998. Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Theriogenology. 49: 871–879.

Fernandez-Novo, A., S. Santos-Lopez, C. Barrajon-Masa, P. Mozas, E. de Mercado, E. Caceres, A. Garrafa, J. V. Gonzalez-Martin, N. Perez-Villalobos, and A. Oliet. 2021. Effect of extender, storage time and temperature on kinetic parameters (CASA) on bull semen samples. Biology. 10: 806.

Hoflack, G., G. Opsomer, T. Rijsselaere, A. Van Soom, D. Maes, A. De Kruif, and L. Duchateau. 2007. Comparison of computer-assisted sperm motility analysis parameters in semen from belgian blue and Holstein–Friesian bulls. Reproduction in Domestic Animals. 42: 153–161.

Januskauskas, A., A. Johannisson, and H. Rodriguez-Martinez. 2003. Subtle membrane changes in cryopreserved bull semen in relation with sperm viability, chromatin structure, and field fertility. Theriogenology. 60: 743–758.

Karoui, S., C. Díaz, C. González-Marín, M. Amenabar, M. Serrano, E. Ugarte, J. Gosálvez, R. Roy, C. López-Fernández, and M. Carabaño. 2012. Is sperm DNA fragmentation a good marker for field AI bull fertility? Journal of Animal Science. 90: 2437–2449.

Kathiravan, P., J. Kalatharan, G. Karthikeya, K. Rengarajan, and G. Kadirvel. 2011. Objective sperm motion analysis to assess dairy bull fertility using computer-aided system–a review. Reproduction in Domestic Animals. 46: 165–172.

Mortimer, S. T. 2000. CASA—practical aspects. Journal of Andrology. 21: 515–524.

Muiño, R., C. Tamargo, C. Hidalgo, and A. Peña. 2008. Identification of sperm subpopulations with defined motility characteristics in ejaculates from Holstein bulls: effects of cryopreservation and between-bull variation. Animal Reproduction Science. 109: 27–39.

Netherton, J. K., B. R. Robinson, R. A. Ogle, A. Gunn, A. I. S. B. Villaverde, K. Colyvas, and M. A. Baker. 2022. Seasonal variation in bull semen quality demonstrates there are heat-sensitive and heat-tolerant bulls. Scientific Reports. 12: 15322.

Özen, D., H. Özen, E. B. Gül, K. T. Olgaç, K. Tekin, M. B. Tirpan, and A. Daşkin. 2025. Comparison of Tree-Based Machine Learning Algorithms for Classification of Livestock Breeds Based On Post-Thaw Spermatological Parameters. Veterinary Medicine and Science. 11: e70539.

Perry, V. 2021. The role of sperm morphology standards in the laboratory assessment of bull fertility in Australia. Frontiers in Veterinary Science. 8: 672058.

Perumal, P., S. Selvaraju, S. Selvakumar, A. Barik, D. Mohanty, S. Das, R. Das, and P. Mishra. 2011. Effect of pre-freeze addition of cysteine hydrochloride and reduced glutathione in semen of crossbred Jersey bulls on sperm parameters and conception rates. Reproduction in Domestic Animals. 46: 636–641.

Raafi, M., M. Yusuf, A. Toleng, and A. Diansyah. 2021. Movement patterns of sperms at different bull breeds using computer-assisted sperm analysis (CASA). P. 1-7. In: IOP Conference Series: Earth and Environmental Science.

Singh, A., A. Kumar, and A. Bisla. 2021. Computer-assisted sperm analysis (CASA) in veterinary science: A review. The Indian Journal of Animal Sciences. 91: 419–429.

Solís, J. M., F. Sevilla, M. A. Silvestre, I. Araya-Zúñiga, E. R. Roldan, A. Saborío-Montero, and A. Valverde. 2024. Effect of thawing procedure and thermo-resistance test on sperm motility and kinematics patterns in two bovine breeds. Animals. 14: 2768.

Susilawati, T. 2013. Pedoman inseminasi buatan pada ternak. Universitas Brawijaya Press.

Valverde, A., V. Barquero, and C. Soler. 2020. The application of computer-assisted semen analysis (CASA) technology to optimise semen evaluation. A review. Journal of Animal and Feed Sciences. 29: 189–198.

Víquez, L., V. Barquero, and A. Valverde. 2021. Condiciones óptimas de análisis cinético en semen fresco de toros Brahman con un sistema CASA-Mot. Agron. Mesoam. 32: 920–938.