Assessment of carcass productivity in buffalo and crossbred beef cattle under controlled intensive fattening conditions

Main Article Content

Nawapat Sangjeen
Thanathip Suwanasopee
Sanon Kanram
Skorn Koonawootrittriron

Abstract

Carcass performance plays a vital role in determining the economic viability of fattening systems, particularly in intensive operations where production costs are high. However, comparative studies on carcass quality between buffaloes and crossbred cattle under standardized fattening conditions remain limited. This study aimed to evaluate carcass characteristics of five ruminant breed groups: Swamp buffalo (SWAMP), River buffalo (RIVER), Angus crossbreds (ANG), Brahman crossbreds (BRA), and Charolais crossbreds (CHA). Twenty healthy male animals (four per group) were fattened under identical feeding and management conditions for 180–240 days until reaching an average live weight of approximately 500 kg. Pre-slaughter measurements included wither height (WH), heart girth (HG), and live weight (LW), while carcass traits measured were hot carcass weight (HCW), cold carcass weight (CCW), hot carcass percentage (HCP), and cold carcass percentage (CCP). Data were analyzed using ANOVA and Pearson’s correlation coefficients. The results showed that the RIVER group had the highest WH and HG (137.75 ± 5.32 cm and 204.25 ± 9.71 cm, respectively). BRA yielded the highest HCP and CCP (61.08 ± 2.00% and 59.14 ± 1.57%, respectively), whereas SWAMP exhibited the lowest values for both traits (HCP: 51.98 ± 3.10%; CCP: 48.02 ± 4.75%). HG was negatively correlated with both HCP (r = -0.48) and CCP (r = -0.68), with statistical significance (P < 0.05). No significant differences were observed among breed groups in terms of LW, HCW, or CCW. These findings indicate that animal breed significantly influences carcass performance, even under uniform feeding and management conditions. The results can be applied to support decision-making in breed selection and fattening strategies to enhance carcass yield and economic returns.

Article Details

How to Cite
Sangjeen, N., Suwanasopee, T., Kanram, S., & Koonawootrittriron, S. (2026). Assessment of carcass productivity in buffalo and crossbred beef cattle under controlled intensive fattening conditions. Khon Kaen Agriculture Journal, 54(1), 81–92. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/268369
Section
บทความวิจัย (research article)

References

กรมปศุสัตว์. 2566. ยุทธศาสตร์กรมปศุสัตว์ พ.ศ. 2566 - 2570. แหล่งข้อมูล: https://planning.dld.go.th/th/images/stories/section 5/2566/DLD_Strategy%202023_2027_1.pdf. ค้นเมื่อ 5 เมษายน 2568.

ธานี ภาคอุทัย, เพลินพรรณ เขตต์กัน และสุพจน์ ศรีสร้อย. 2563. การศึกษาสถานภาพการผลิตและการตลาดกระบือของไทยตามเส้นระเบียงเศรษฐกิจแนวตะวันออก-ตะวันตก (East-West Economic Corridor: EWEC). แหล่งข้อมูล: https://extension.dld.go.th/webnew/images/stories/63/วิชาการ/รายงานผลวิจัยกระบือ.pdf. ค้นเมื่อ 14 พฤษภาคม 2568.

สโรชา กล่ำฉนวน. 2554. ผลของเพศและอายุที่มีต่อคุณภาพซากและคุณภาพเนื้อกระบือ. วิทยานิพนธ์ ปริญญาวิทยาศาสตร์ มหาบัณฑิต มหาวิทยาลัยแม่โจ้, เชียงใหม่.

Coyne, J. M., R. D. Evans, and D. P. Berry. 2019. Dressing percentage and the differential between live weight and carcass weight in cattle are influenced by both genetic and non-genetic factors1. Animal Science Journal. 97: 1501–1512.

Elzo, M. A., D. D. Johnson, J. G. Wasdin, and J. D. Driver. 2012. Carcass and meat palatability breed differences and heterosis effects in an Angus-Brahman multibreed population. Meat Science. 90: 87–92.

Karolyi, D., Čubrić-Čurik, K. Salajpal, and M. Ðikic. 2012. The effect of sex and DGAT1 gene polymorphism on fat deposition traits in Simmental beef cattle. Acta Veterinaria. 62: 91–100.

Koonawootrittriron, S., J. Khemsawat, T. Suwanasopee, and M. Osothong. 2015. Challenges for sustainability of beef cattle production in Thailand. In: Proceedings of the 5th International Conference on Sustainable Animal Agricultural for Developing Counties 27–30 October 2015. Pattaya, Thailand.

Lambertz, C., P. Panprasert, W. Holtz, E. Moors, S. Jaturasitha, M. Wicke, and M. Gauly. 2014. Carcass characteristics and meat quality of swamp buffaloes (Bubalus bubalis) fattened at different feeding intensities. American Junior Academy of Sciences. 27: 551–560.

Lapitan, R. M., A. N. Del Barrio, O. Katsube, and T. Ban-Tokuda. 2007. Comparison of carcass and meat characteristics of Brahman grade cattle (Bos indicus) and crossbred water buffalo (Bubalus bubalis). Animal Science Journal. 78: 596–604.

Minervino, A. H. H., M. Zava, D. Vecchio, and A. Borghese. 2020. Bubalus bubalis: A short story. Frontiers in Veterinary Science. 7: 570413.

Mousbah, A. M., M. Hesham, W. S. Mohammed, M. E. R. El-Refy, and H. Mohamed. 2023. Buffalo genome projects: current situation and future perspective in improving breeding programs. Available: https://www.researchgate.net/publication/369946197_Buffalo_Genome_Projects_Current_Situation_and_Future_Perspective_in_Improving_Breeding_Programs. Accessed Feb.27, 2025.

Mukaka, M. M. 2012. Statistics corner: Statistics Corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal. 24: 69–71.

Pitchford, W. S., C. M. Trotta, M. L. Hebart, S. M. Michelle, and D. L. Rutley. 2020. Yield measurement is valuable for pricing beef carcasses. Animal Production Science. 61: 287–293.

Riley, D. G., D. D. Johnson, C. C. Jr. Chase, R. L. West, S. W. Coleman, T. A. Olson, and A. C. Hammond. 2005. Factors influencing tenderness in steaks from Brahman cattle. Meat Science. 70: 347–56.

Rodas-González, A., N. Huerta-Leidenz, A. Vidal, O. Colina, J. Lopez, and R. Rodriguez. 2015. Comparison of water buffalo (Bubalus bubalis) with crossbred and purebred Brahman cattle for growth performance on savannah and slaughter traits at four ages in Venezuela. Animal Production Science. 55: 967.

Roy, B. K., N. Huda, K. S. Huque, N. Sultana, and N. R. Sarker. 2020. Yield grade and quality assessment of native buffalo meat and beef at different ages. Tropical Animal Science Journal. 43: 360–368.

Sakowski, T., G. Grodkowski, M. Gołebiewski, J. Slósarz, P. Kostusiak, P. Solarczyk, and K. Puppel. 2022. Genetic and environmental determinants of beef quality—A Review. Frontiers in Veterinary Science. 9: 819605.

SAS Institute Inc. 2014. SAS® Ondemand for Academics: User’s Guide. SAS Institute Inc., Cary, NC, USA.

Simões, J. A., J. F. F. Mira, J. P. C. Lemos, and I. A. Mendes. 2005. Dressing percentage and its relationship with some components of the fifth quarter in Portuguese cattle breeds. Livestock Production Science. 96: 157–163.

Singh, P. K., S. S. Ahlawat, D. P. Sharma, and A. Pathera. 2018. Carcass characteristics of male buffalo calf and meat quality of its veal. Buffalo Bulletin. 37: 129–144.

Wegner, J., E. Albrecht, I. Fiedler, F. Teuscher, H. J. Papstein, and K. Ender. 2000. Growth- and breed-related changes of muscle fiber characteristics in cattle. Animal Science Journal. 78: 1485–96.

Wolkaro, T., Y. Tadesse, M. Urge, and M. Bayisa. 2023. Prediction of slaughter weight with body components and linear body measurement of Hararge cattle at Haramaya University abattoir, Ethiopia. Heliyon. 11. https://doi.org/10.1016/j.heliyon.2024.e41219.