Screening for broad spectrum antagonistic Bacillus spp. with plant growth promotion capability from cassava stem and vermi-compost for control black stem rot disease of cassava

Main Article Content

Supichaya Phoeisiri
Petcharat Thummabenjapone

Abstract

This research article had main objective for screening Bacillus spp. which being as broad-spectrum antagonistic bacteria and plant growth promotion as well. The Bacillus spp. isolates were isolated from healthy stem of cassava varieties and vermi-compost using NA medium. The Gram-positive bacteria which colony morphology resemble to Bacillus spp. were collected. The ability to inhibit growth of selected plant pathogenic bacteria Xanthomonas euvesicatoria, Pectobacterium carotovorum and Ralstonia solanacearum were tested by dual culture bioassay. The ability to control the major plant pathogenic fungi, e.g., Sclerotium rolfsii, Lasiodiplodia spp. and Colletotrichum capsici were also tested by dual culture bioassay. Ability for plant growth promotion was evaluated using 3 criteria including the ability to produce indole-3-acetic acid (IAA), phosphate solubilization and siderophore production. Total 106 isolates were obtained, and 12 Bacillus isolates were good candidates for further testing to control L. theobromae, the causal agent of black stem rot disease of cassava. The ability of 12 selected Bacillus isolates to inhibit the growth of Lasiodiplodia-LS02 and -LS08 were tested by dual culture bioassay compared with the broad-spectrum antagonistic Bacillus-BS and Bacillus-NTS3 obtained from Assoc. Prof. Petcharat Thummabenjapone and control (agar disc) treatment. The Lasiodiplodia-LS02 and Lasidiplodia-LS08 were the most aggressive isolates. The species determination using the nucleotide sequence of internal transcribed spacer of ITS1 -5.8s-ITS2 region using primer ITS5f and ITS4r showed that the Lasiodiplodia-LS02 and Lasiodiplodia-LS08 were designated as L. theobromae. Results revealed that the 3 top isolates were CS1, CS22 and CS99, which strongly inhibited at 48.72-56.41 inhibition percentage, significantly better than the ability of Bacillus-BS and Bacillus-NTS3 isolates. They produced IAA at a rate of 2.91-7.41 µg/ml, phosphate solubilization index was 1.17-1.22 and produced siderophore with an index at 1.70-2.40. Based on the nucleotide sequence of 16S rDNA, 

Article Details

How to Cite
Phoeisiri, S., & Thummabenjapone, P. . (2026). Screening for broad spectrum antagonistic Bacillus spp. with plant growth promotion capability from cassava stem and vermi-compost for control black stem rot disease of cassava. Khon Kaen Agriculture Journal, 54(1), 132–154. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/268812
Section
บทความวิจัย (research article)

References

ทวินันท์ บางขาม และเพชรรัตน์ ธรรมเบญจพล. 2564. การคัดเลือกเชื้อแบคทีเรียปฏิปักษ์ที่ควบคุมโรคเหี่ยวเขียวและช่วยส่งเสริมการเจริญเติบโตของต้นกล้าพริก. แก่นเกษตร. 6: 1502–1514.

สุปรียา หมื่นสกุล. 2547. ความหลากหลายทางพันธุกรรมของ Bacillus spp. จากแหล่งต่างๆและประสิทธิภาพในการเป็นปฏิปักษ์ต่อเชื้อสาเหตุโรคพืชบางชนิด. วิทยานิพนธ์วิทยาศาสตร์มหาบัณฑิต สาขาโรคพืชวิทยา มหาวิทยาลัยขอนแก่น. ขอนแก่น.

สุทธิสา ดัชนีย. 2558. การระบุเชื้อราสาเหตุโรคต้นและรากเน่าดําของมันสำปะหลัง. วิทยานิพนธ์ปริญญาวิทยาศาสตรมหาบัณฑิต มหาวิทยาลัยเทคโนโลยีสุรนารี, นครราชสีมา.

สำนักงานนโยบายและยุทธศาสตร์การค้า. 2568. การส่งออกมันสำปะหลังกลับมาฟื้นตัวในรอบ 14 เดือน ส่งออกจีนขยายตัวร้อยละ 25.1. แหล่งข้อมูล: https://tpso.go.th/news/2501-0000000014. ค้นเมื่อ 3 มิถุนายน 2568.

อานัฐ ตันโช. 2557. สายพันธุ์ไส้เดือนดินที่น่าเลี้ยง. ดินและปุ๋ย. 36: 6–12.

Anckaert, A., A. Arguelles Arias, G. Hoff, M. Calonne-Salmon, S. Declerck, and M. Ongena. 2021. The use of Bacillus spp. as bacterial biocontrol agents to control plant diseases. In: Burleigh Dodds Series in Agricultural Science. Burleigh Dodds Science Publishing, UK.

Brito, A. C. Q. 2020. Diversity and pathogenicity of Botryosphaeriaceae species associated with black root rot and stem cutting dry rot in Manihot esculenta in Brazil. European Journal of Plant Pathology. 157: 583–598.

Choi, Y. W., K. D. Hyde and W. H. Ho. 1999. Single spore isolation of fungi. Fungal Diversity. 3: 29–38.

Collavino, M. M., P. A. Sansberro, L. A. Mroginski, and O. M. Aguilar. 2010. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils. 46: 727–738.

Fan, H., Z. Zhang, Y. Li, X. Zhang, Y. Duan, and Q. I. Wang. 2017. Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial activity and colonization. Frontiers in Microbiology. 2017 Oct 11; 8: 1973.doi:10.3389/fmicb.2017.01973. PMID:29075242; PMCID: PMC5641556.

Gopalakrishnan, S., S. Vadlamudi, S. Apparla, P. Bandikinda, R. Vijayabharathi, R. K. Bhimineni, and O. Rupela. 2014. Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiological Research. 169: 40-48.

Heuer, H., M. Kresek, P. Baker, K. Smalla, and E. M. Wellington. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology. 63: 3233-3241.

Hoshikawa, K., S. Fujita, N. Renhu, K. Ezura, T. Yamamoto, S. Nonaka, and K. Miura. 2019. Efficient transient protein zexpression in tomato cultivars and wild species using agroinfiltration-mediated high expression system. Plant Cell Reports. 38: 75-84.

Jin, P., L. Chu L, Z. Xuan, Z. Lin, and Y. Fang. 2025. Bacillus velezensis, a new valuable source of bioactive molecules within plant microbiomes and natural weapons for the biocontrol of plant pathogens. Tropical Plants 4: e001 doi:10.48130/tp-0024-0044.

Kabir, L., W. K. Sang, S. K. Yun, and S. L. Youn. 2012. Application of rhizobacteria for plant growth promotion effect and biocontrol of anthracnose caused by Colletotrichum acutatum on pepper. Mycobiology. 40: 244-251.

Kloepper, J. W., C. M. Ryu, and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 94: 1259-1266.

Kumar, P., M. Kamle, R. Borah, D. K. Mahato, and B. Sharma. 2021. Bacillus thuringiensis as microbial biopesticide: uses and application for sustainable agriculture. Egyptian Journal of Biological Pest Control. 31: 95.

Machado, A. R., D. B. Pinho, and O. L. Pereira. 2014. Phylogeny, identification and pathogenicity of the botryosphaeriaceae associated with collar and root rot of the biofuel plant Jatropha curcas in Brazil, with A description of new species of Lasiodiplodia. Fungal Diversity. 67: 231-247.

Pathma, J., and N. Sakthivel. 2012. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Journal of Environmental Management. 112: 410-418.

Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya. 17: 362-370.

Radhakrishnan, R., A. Hashem, and E. F. Abd-Allah. 2017. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology. 8: 667.

Ramalakshmi, A., R. Sharmila, M. Iniyakumar, and V. Gomathi. 2020. Nematicidal activity of native Bacillus thuringiensis against the root knot nematode, Meloidogyne incognita (Kofoid and White). Egyptian Journal of Biological Pest Control. 30: 90.

Ramamoorthy, V., R. Viswanathan, T. Raguchander, V. Prakasam, and R. Samiyappan. 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection. 20: 1-11.

Schwyn, B., and J. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry. 160: 47-56.

Shafi, J., H. Tian, and M. Ji. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment. 31: 446-459.

White, T. J., T. Bruns, S. J. W. T. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications. 18: 315-322.