The studied of growth, absorption and accumulation of heavy metals by sunflower (Helianthus annuus L.) grown on Cd-Zn co-contaminated solution
The studied of growth, absorption and accumulation of heavy metals by sunflower (Helianthus annuus L.) grown on Cd-Zn co-contaminated solution
Keywords:
Growth, Absorption, Cd, Zn, SunflowerAbstract
This research aimed to investigate the growth and accumulation of heavy metals by sunflower grown on Cd-Zn co-contaminated solution. Sunflowers were grown with mineral solution containing Cd and Zn at different concentrations to study the effects of heavy metals on growth and selected proper concentrations that did not affect growth for further experiments. Sunflowers grew well when planted in a solution with a concentration of Cd not more than 0.5 mg/L and Zn concentration of not more than 1.25 mg/L. After that, sunflower cultivation was carried out in mineral solution containing Cd at concentrations of 0, 0.1, 0.3 and 0.5 mg/L. Each Cd concentration was added with Zn at concentrations of 0, 0.2, 0.6 and 1 mg/L for 15 days. The plants were then analyzed for growth and heavy metal accumulation. This investigation revealed that Zn, a micronutrient, inhibits plant growth and causes toxicity when received in a too high dose. The right amount of Zn can promote plant growth in Cd co-containing conditions. Increased Cd concentration in the stem would result in a decrease in the Zn concentration in the stem. Cd may affect Zn absorption and interfere with the physiological processes of plants which Zn is involved. In this study, sunflower had the ability to transport and accumulate Cd in the stem of more than 100 mg/kg dry weight. It is classified as a Cd hyperaccumulator plant.
References
กรมควบคุมมลพิษ. (2556). จดหมายข่าว ฟื้นฟูคลิตี้ ปีที่ 1 ฉบับที่ 1. ค้นเมื่อ 29 พฤษภาคม 2565. https://www.pcd.go.th/publication/6426/.
ยงยุทธ โอสถสภา. (2546). ธาตุอาหารพืช. (พิมพ์ครั้งที่ 2). สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์: กรุงเทพมหานคร.
Abdel-Halim S.H., Shehata A.M.A. and El-Shahat M.F. (2003). Removal of lead ions from industrial waste by different type of natural materials. Water Research. 37: 1678–1683.
Adesodun J., Atayese M., Agbaje T., Osadiaye B., Mafe O. and Soretire A. (2010). Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air & Soil Pollution. 207: 195–201.
Ahalya N., Ramachandra T.V. and Kanamadi R.D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment. 7(4): 71–79.
Ali H., Khan E. and Sajad M.A. (2013). Phytoremediation of heavy metals – Concepts and applications. Chemosphere. 91: 869 – 881.
Baker A.J.M. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition. 3: 1–4.
Chantachon S., Krutrachue M. and Pokethitiyooketa P. (2004). Phytoextraction and accumulation of lead from contaminated soil by Vetiver grass: laboratory and simulated field study. Water Air & Soil Pollution. 154: 37–55.
Chintakovid W., Visoottiviseth P., Khokiattiwong S. and Lauengsuchonkul S. (2008). Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand. Chemosphere. 70: 1532-1537.
Coleman J.E. (1992). Zinc proteins: enzymes, storage proteins, transcription factors and replication proteins. Annual Review of Biochemistry. 61: 897–946.
Francis C.W. and Rush S.G. (1973). Factors affecting uptake and distribution of cadmium in plants. In Hemphill D.D., Editor. Trace substances in environmental health. University of Missouri Press: Columbia. 75–81.
Harborne J.B. (1989). Introduction to ecological biochemistry. Academic Press: New York.
Hawf L.R. and Schmid W.E. (1967). Uptake and translocation of zinc by intact plants. Plant and Soil. 2: 249–260.
Hunt R. (2003). Growth analysis, individual plants. In Thomas B., Murphy D.J. and Murray D., Editors. Encylopaedia of applied plant science. Acedemic Press: London. 579–588.
Jadia C.D. and Fulekar M.H. (2008). Phytoremediation: the application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environmental Engineering and Management Journal. 7(5): 547–558.
Jadia C.D. and Fulekar M.H. (2009). Phytoremediation of heavy metals: recent techniques. African Journal of Biotechnology. 8(6): 921–928.
Kim M.J. and Motto H.L. (1978). Effects of zinc, phosphorus and iron on the cadmium uptake and accumulation by hydroponically grown tomato. Journal of the Korean Agricultural Chemical Society. 21(1): 40–50.
Kötschau A., Büchel G., Einax J.W., Tümpling W.V. and Merten D. (2014). Sunflower (Helianthus annuus): phytoextraction capacity for heavy metals on a mining-influenced area in Thuringia, Germany. Environmental Earth Science. 72: 2023-2031.
La-up A., Mahasakpan P. and Saengow U. (2021). The current status of osteoporosis after 15 years of reduced cadmium exposure among residents living in cadmium-contaminated areas in northwestern Thailand. Environmental Science and Pollution Research. 28: 20121–20127.
Mattina M.J.I., Lannucci-Berger W., Musante C. and White J.C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution. 124: 375–378.
Newman L.A., Strand S.E., Choe N., Duffy J., Ekuan G., Ruszaj M., Shurtleff B.B., Wilmoth J., Heliman P. and Gordon M.P. (1997). Uptake and biotransformation of trichloroethylene by hybrid poplars. Environmental Science & Tehnology. 31(4): 1062–1067.
Pandey N. and Sharma C.P. (2002). Effect of heavy metals Co, Ni and Cd on growth and metabolism of cabbage. Plant Science. 163: 753–758.
Phaenark C., Pokethitiyook P., Kruatrachue M. and Ngernsansaruay C. (2009). Cd and Zn accumulation in plants form the Padaeng Zn mine area. International Journal of Phytoremediation. 11: 479–495.
Reinhold J.G., Faradji B., Abadi P. and Ismall-Beigi F. (1976). Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread. The Journal of Nutrition. 106(4): 493–503.
Robinson N.J., Urwin P.E., Robinson P.J. and Jackson P.J. (1994). Gene expression in relation to metal toxicity and tolerance. Harwood Academic Publisher: New York.
Root R.A., Miller R.J. and Koeppe D.E. (1975). Uptake of cadmium-its toxicity, and effect on the iron ratio in hydroponically grown corn. Journal of Environmental Quality. 4(4): 473–476.
Rotkittikhun P., Chaiyarat R., Krutrachue M., Pokethitiyook P. and Baker A.J.M. (2007). Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: A glasshouse study. Chemosphere. 66: 45-53.
Rotkittikhun P., Kruatrachue M., Chaiyarat R., Ngernsansaruay C., Pokethitiyook P., Paijitprapaporn A. and Baker A.J.M. (2006). Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environmental Pollution. 144: 681-688.
Shaheen S.M. and Rinklebe J. (2015). Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. Environmental Geochemistry and Health. 37: 953–967.
Simmons R.W., Pongsakul P., Saiyasitpanich D. and Klinphoklap S. (2005). Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: Implications for public health. Environmental Geochemistry and Health. 27: 501–511.
Smith G.C. and Brennan E. (1983). Cadmium–zinc interrelationships in tomato plants. Phytopatholgy. 73: 879–882.
Visoottiviseth P., Francesconi K. and Sridokchan W. (2002). The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution. 118(3): 453-461.
Waranusantigul P., Kruatrachue M., Pokethitiyook P. and Auesukaree C. (2008). Evaluation of Pb phytoremediation potential in Buddleja asiatica and B. paniculata. Water Air & Soil Pollution. 193: 79-90.
Zekri M. and Obreza T.A. (2003). Micronutrient deficiencies in citrus: iron, zinc, and manganese. University of florida: Florida.
Downloads
Published
Versions
- 2024-02-19 (2)
- 2022-08-30 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Agriculture and Technology Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารทดสอบระบบ ThaiJo2 ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใดๆ
บทความ ข้อมูล เนื่อหา รูปภาพ ฯลฯ ที่ได้รับการดีพิมพ์ในวารสารทดสอบระบบ ThaiJo2 ถือเป็นลิขสิทธิ์ของวารสารทดสอบระบบ ThaiJo2 หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่หรือเพื่อกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักอักษรณ์จากวารสารทดสอบระบบ ThaiJo2 ก่อนเท่านั้น
