Effect of 5-aminolevulinic Acid on Growth Performance and Immune Responses in Hybrid Striped Catfish (Pangasianodon gigas × Pangasianodon hypopthalmus) ผลของกรด 5-อะมิโนลีวูลินิกต่อการเจริญเติบโตและการตอบสนองของภูมิคุ้มกันในปลาสวายปรับปรุงสายพันธุ์ (Pangasianodon gigas × Pangasianodon hypopthalmus)

  • Wiroonsak Thongsupa Faculty of Natural Resources, Prince of Songkla University
  • Naraid Suanyuk Faculty of Natural Resources, Prince of Songkla University
  • Angkana Saikeur Faculty of Science and Technology, Rajamangala University of Technology Srivijaya
  • Suppanat Thaneerat Faculty of Natural Resources, Prince of Songkla University
Keywords: hybrid striped catfish, 5-aminolevulinic acid, growth performance, immunity system

Abstract

This study reports the effects of 5-aminolevulinic acid (ALA) from Rhodopseudomonas palustris JP225 on growth performance and immune responses in hybrid striped catfish (Pangasianodon gigas × P. hypophthalmus). Hybrid striped catfish with an initial weight of 7.71-7.78 g were fed with commercial diet supplemented with ALA at concentrations of 0 (control), 2.5, 5.0, 7.5 and 10.0 mg/kg. After 4 weeks of feeding, the fish received diet containing 2.5 mg/kg ALA concentrations demonstrated the highest final weight, weight gain and specific growth rate with the best feed conversion ratio in comparison with fish fed with other diet formulas with statistical significance (p < 0.05). Furthermore, fish fed with 2.5 mg/kg ALA concentrations increased their red and white blood cells, total haemoglobin, haematocrit, phagocytosis, phagocytic index, and average number of the bead ingested per cell to the highest level comparing to fish fed the control diet and showed statistically significant differences (p < 0.05). After 8 weeks of feeding, no statistically significant difference in growth performance of fish was observed among diet supplemented with ALA at every concentration levels (p > 0.05). Moreover, it was found that fish fed with 10 mg/kg ALA concentrations showed that the immune responses which were total haemoglobin, haematocrit, and serum protein were decreased. Yet, there were significantly increased in the average respiratory burst activity and phagocytic index to the highest level comparing to fish fed the control diet and showed statistically significant differences (p < 0.05). These findings indicated that supplementation of ALA concentrations from R. palustris JP225 at the concentration of 2.5 mg/kg diet for 4 weeks enhanced growth performance and immunity of hybrid striped catfish.

Downloads

Download data is not yet available.

References

เกรียงศักดิ์ เม่งอำพัน ดวงพร อมรเลิศพิศาล สุดาพร ตงศิริ และอุดมลักษณ์ สมพงศ์. (2554). ระบบการเลี้ยงปลาบึกและปลาหนังลูกผสมที่มีประสิทธิภาพ. รายงานผลงานวิจัย. สำนักวิจัยและส่งเสริมวิชาการการเกษตร และสำนักงานคณะกรรมการวิจัยแห่งชาติ.

เกรียงศักดิ์ เม่งอำพัน จิตรลดา สอนตะโก และดวงพร อมรเลิศไพศาล. (2555). ผลของสาหร่ายสไปรูลินาต่อการเจริญเติบโตและการเจริญพันธุ์ของพ่อแม่พันธุ์ของปลาหนังกลุ่ม Pangasius และการอนุบาลปลาหนัง 4 สายพันธุ์ในกระชัง. วารสารเทคโนโลยีการประมง, 5(2), 12-26.

วิศรุต ช่อเส้ง นัทท์ นันทพงศ์ และวุฒิพร พรหมขุนทอง. (2562). การแทนที่ปลาป่นด้วยแหล่งโปรตีนจากพืชในอาหารปลาสวายลูกผสม. แก่นเกษตร, 47(2), 281-292.

อมรรัตน์ ตั้งประสิทธิภาพ. (2549). การผลิตกรด 5-อะมิโนลีวูลินิกภายในเซลล์จาก Rhodobacter sphaeroides SH5 และผลต่อการเจริญเติบโตและกลไกการป้องกันตนเองของกุ้งกุลาดำ(Penaeus monodon). วิทยานิพนธ์ปรัชญาดุษฎีบัณฑิต. มหาวิทยาลัยสงขลานครินทร์, สงขลา.

Chen, Y.J., Kim, I.H., Cho, J.H., Min, B.J., Yoo, J.S. and Wang, Q. (2008). Effect of δ-aminolevulinic acid on growth performance, nutrient digestibility, blood parameters and the immune response of weanling pigs challenged with Escherichia coli lipopolysaccharide. Livestock Science, 114(1), 108-116.

Chung, S. and Secombes, C.J. (1988). Analysis of events occurring within teleost macrophages during the respiratory burst. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 89(3), 539-544.

Immenschuh, S., Baumgart-Vogt, E., Tan, M., Iwahara, S., Ramadori, G. and Fahimi, H.D. (2003). Differential cellular and subcellular localization of heme-binding protein 23/peroxiredoxin I and heme oxygenase-1 in rat liver. Journal of Histochemistry and Cytochemistry, 51(12), 1621-1631.

Ito, H., Nishio, Y., Hara, T., Sugihara, H., Tanaka, T. and Li, X.K. (2018). Oral administration of 5-aminolevulinic acid induces heme oxygenase-1 expression in peripheral blood mononuclear cells of healthy human subjects in combination with ferrous ion. European Journal of Pharmacology, 833, 25-33.

Kiatpapan, P., Phonghatsabun, M., Yamashita, M., Murooka, Y. and Panbangred, W. (2011). Production of 5-aminolevulinic acid by Propionibacterium acidipropionici TISTR 442. Journal of Bioscience and Bioengineering, 111(4), 425-428.

Klein, O., Dornemann, D. and Senger, H. (1980). Two biosynthetic pathways to 5-aminolevulinic acid in algae. International Journal of Biochemistry, 12(5-6), 725-728.

Liu, S., Zhang, G., Li, J., Li, X. and Zhang, J. (2016). Optimization of biomass and 5-aminolevulinic acid production by Rhodobacter sphaeroides ATCC17023 via response surface methodology. Applied Biochemistry and Biotechnology, 179(3), 444-458.

Mateo, R.D., Morrow, J.L., Dailey, J.W., Ji, F. and Kim, S.W. (2006). Use of δ-aminolevulinic acid in swine diet: Effect on growth performance, behavioral characteristics and hematological/immune status in nursery pigs. Asian-Australasian Journal of Animal Sciences, 19(1), 97-101.

Mauzerall, D. and Granick, S. (1956). The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. Journal of Biological Chemistry, 219(1), 435-446.

Rengpipat, S., Rukpratanporn, S., Piyatiratitivorakul, S. and Menasaveta, P. (2000). Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture, 191(4), 271-288.

Ryter, S.W., Alam, J. and Choi, M.K. (2006). Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiological Review, 86(2), 583-650.

Saikeur, A., Choorit, W., Prasertsan, P., Kantachote, D. and Sasaki, K. (2009). Influence of precursors and inhibitor on the production of extracellular 5-aminolevulinic acid: and biomass by Rhodopseudomonas palustris KG31. Bioscience Biotechnology and Biochemistry, 73(5), 987-992.

Sasaki, K., Watanbe, K., Tanaka, T., Hotta, Y. and Nagai, S. (1995). 5-aminolevulinic acid production by Chlorella sp. during heterotrophic cultivation in the dark. World Journal of Microbiology and Biotechnology, 11(3), 361-362.

Sato,K., Matsushita, K., Aoki, M., Fuziwara, J., Miyanari, S. and Kamada, T. (2012). Dietary supplementation with 5-aminolevulinic acid modulates growth performance and inflammatory response in broiler chickens. Poultry Science, 91(7), 1582-1589.

Spurlock, M.E. (1997). Regulation of metabolism and growth during immune challenge: an overview of cytokine function. Journal of Animal Science, 75(7), 1773-1783.

Suwannasang, A., Dangwetngam, M., Issaro, A., Phromkunthong and Suanyuk, N. (2014). Pathological manifestations and immune responses of serotypes Ia and III Streptococcus agalactiae and infections in Nile tilapia (Oreochromis niloticus). Songklanakarin Journal of Science and Technology, 36(5), 499-506.

Tanaka, T., Takahashi, K., Hotta, T., Takeuchi, Y. and Konnai, M. (1992). Promotive effect 5-aminolevulinic on yield of several crops. In Proceeddings of the 19th annual meeting of plant growth regulator Society of America, San Francisco (pp. 237-241). Plant Growth Regulator Society of America. Washington DC.

Thuvander, A., Norrgren, L. and Fossum, C. (1987). Phagocytic cells in blood from rainbow trout (Salmo gairdneri Richardson) characterized by flow cytometry and electronmicroscopy. Journal of Fish Biology, 31(2), 197-208.

Wang, J.P., Jung, J.H. and Kim, I.H. (2011). Effects of dietary supplementation with delta-aminolevulinic acid on growth performance, hematological status, and immune responses of weanling pigs. Journal Livestock Science, 140(1), 131-135.

Yan, L. and Kim, I.H. (2011). Evaluation of dietary supplementation of delta-aminolevulinic acid and chitooligosaccharide on growth performance, nutrient digestibility, blood characteristic and fecal microbial shedding in weaned pigs. Animal Feed Science and Technology, 169(3-4), 275-280.

Younis, E.M., Al-Quffail, A.S., Al-Asgah, N.A., Abdel-Warith, A.A. and Al-Hafedh, Y.S. (2018). Effect of dietary fish meal replacement by red algae, Gracilaria arcuata, on growth performance and body composition of Nile tilapia Oreochromis niloticus. Saudi Journal of Biological Sciences, 25(2), 198-203.

Zhang, J., Kang, Z., Chen, J. and Du, G. (2015). Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Scientific Reports, 5, 8584.

Zhang, L.W., Fang, Y.P. and Fang, J.Y. (2011). Enhancement techniques for improving 5-aminolevulinic acid delivery through the skin. Dermatologica Sinica, 29(1), 1-7.

Published
2020-06-26
Section
บทความวิจัย (Research Articles)