The Potential of Wastewater from Kha Nom Lah Production Process for Biogas Production

Main Article Content

Aneak Sawain
Chanika Saenge Chooklin
Chutinut Sujarit
Somrak Rodjaroen

Abstract

Wastewater from the Kha Nom Lah production process is highly contaminated with organic matter, this is caused by the use of water in the process of preparing rice flour as raw materials in the production process. This wastewater has a foul smell caused by the decomposition process of contaminated organic matter and results  in water pollution when it is released into public water sources. This research aims to study the potential of wastewater from the Kha Nom Lah production process for biogas production. It is a guideline for utilizing this wastewater and treating it to reduce the organic loading, through the removal of organic matter, turning it into biogas by anaerobic digestion process. The results demonstrate the potential of wastewater from the Kha Nom Lah production process to be utilized for biogas production. The biogas generation rate is between 0.023±0.001 liter per liter of wastewater/day. The results of the biogas yield calculation compared to the COD removal, the values were between 0.08±0.02 liter per gram of COD removed. The removal of organic matter in wastewater resulted in the average efficiency of removing organic matter in the form of COD and BOD was 65.9±0.8 and 68.6±2.3 percent, respectively. The results of the measurement of methane gas in biogas show that the average methane content was 62.2±1.7 percent (% LEL), and from the test it was found that the biogas can ignite. This will be a guideline for utilizing wastewater from the Kha Nom Lah production process for biogas production, supporting the production of renewable energy from waste in this industry. The biogas produced can be used to replace LPG gas in the production process or use it in the household, as a renewable energy to reduce energy costs.

Downloads

Download data is not yet available.

Article Details

Section
บทความวิจัย (Research Articles)

References

เอนก สาวะอินทร์ ชุตินุช สุจริต มณีรัตน์ สุทธิวงศ์ และศริญญา พูลเขาล้าน. (2558). ผลของอัตราส่วนผสมระหว่างน้ำเสียจากโรงงานผลิตเส้นขนมจีนกับน้ำเสียจากโรงงานน้ำมันปาล์มที่มีต่อการเริ่มเกิดก๊าซชีวภาพ. ใน การประชุมวิชาการระดับชาติมหาวิทยาลัยเทคโนโลยีราชมงคล ครั้งที่ 7. (หน้า 312-321). นครราชสีมา: มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน.

เอนก สาวะอินทร์ ฌานิกา แซ่แง่ ชูกลิ่น และกัตตินาฏ สกุลสวัสดิพันธ์. (2564). การพัฒนาระบบผลิตก๊าซชีวภาพจากเศษข้าวโดยถังปฏิกรณ์ไร้อากาศแบบแผ่นกั้นประยุกต์ (MABR). วารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช, 40(1), 121-134.

เอนก สาวะอินทร์. (2563). ชุดเตาก๊าซชีวภาพ. อนุสิทธิบัตรไทย เลขที่ 16985. กรุงเทพฯ: กรมทรัพย์สินทางปัญญา กระทรวงพาณิชย์.

APHA, AWWA and WEF. (2012). Standard methods for the examination of water and wastewater. (22nd ed). Washington, DC: American public health association (APHA), American water works association (AWWA) and water environment federation (WEF).

Barber, W.P. and Stuckey, D.C. (1999). The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review. Water Research, 33(7), 1559-1578.

Bennich, T. and Belyazid, S. (2017). The route to sustainability-prospects and challenges of the bio-based economy. Sustainability, 9(6), doi: https://doi.org/10.3390/su9060887.

Cremonez, P.A., Sampaio, S.C., Teleken, J.G., Meier, T.W., Frigo, E.P., Rossi, E.D., Silva, E.D. and Rosa, D.M. (2020). Effect of substrate concentrations on methane and hydrogen biogas production by anaerobic digestion of a cassava starch-based polymer. Industrial Crops and Products, 151, doi: https://doi.org/10.1016/j.indcrop.2020.112471.

Cruz, I.A., Andrade, L.R.S., Bharagava, R.N., Nadda, A.K., Bilal, M., Figueiredo, R.T. and Ferreira, L.F.R. (2021). Valorization of cassava residues for biogas production in Brazil based on the circular economy: An updated and comprehensive review. Cleaner Engineering and Technology, 4, doi: https://doi.org/10.1016/j.clet.2021.100196.

Eddy, M.A., Burton, F.L., Tchobanoglous, G. and Tsuchihashi, R., (2013). Wastewater engineering: Treatment and resource recovery. (5th ed). New York: McGraw-Hill education.

Fujihira, T., Seo, S., Yamaguchi, T., Hatamoto, M. and Tanikawa, D. (2018). High-rate anaerobic treatment system for solid/lipid-rich wastewater using anaerobic baffled reactor with scum recovery. Bioresource Technology, 263, 145-152, doi: https://doi.org/10.1016/j.biortech.2018.04.091.

Gikas, G.D., and Tsihrintzis, V.A. (2012). A small-size vertical flow constructed wetland for on-site treatment of household wastewater. Ecological Engineering. 44, 337-343, doi: http://dx.doi.org/10.1016/j.ecoleng.2012.04.016.

Gudiukaite, R., Nadda, A.K., Gricajeva, A., Shanmugam, S., Nguyen, D.D. and Lam, S.S. (2021). Bioprocesses for the recovery of bioenergy and value-added products from wastewater: A review. Journal of Environmental Management, 300, doi: https://doi.org/10.1016/j.jenvman.2021.113831.

Hu, Y., Kobayashi, T., Zhen, G., Shi, C. and Xu, K.Q. (2018). Effects of lipid concentration on thermophilic anaerobic co-digestion of food waste and grease waste in a siphondriven self-agitated anaerobic reactor. Biotechnology Reports, 19, doi: https://doi.org/10.1016/j.btre.2018.e00269.

Khongkliang, P., Kongjan, P. and O-Thong, S. (2015). Hydrogen and methane production from starch processing wastewater by thermophilic two-stage anaerobic digestion. Energy Procedia, 79, 827-832, doi: https://doi.org/10.1016/j.egypro.2015.11.573.

Knisz, J., Shetty, P., Writh, R., Maroti, G., Karches, T., Dalko, I., Balint, M., Vadkerti, E., and Biro, T. (2021). Genome-level insights into the operation of an on-site biological wastewater treatment unit reveal the importance of storage time. Science of the Total Environment, 766, doi: https://doi.org/10.1016/j.scitotenv.2020.144425.

Meena, R.A.A., Kannah, R.Y., Sindhu, J., Ragavi, J., Kumar, G., Gunasekaran, M. and Banu, J.R. (2019). Trends and resource recovery in biological wastewater treatment system. Bioresource Technology Reports, 7, doi: https://doi.org/10.1016/j.biteb.2019.100235.

Nagarajan, D., Lee, D.J., Chen, C.Y. and Chang, J.S. (2020). Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresource Technology, 302, doi: https://doi.org/10.1016/j.biortech.2020.122817.

Padi, R.K., Chimphango, A. and Roskilly, A.P. (2022). Economic and environmental analysis of waste-based bioenergy integration into industrial cassava starch processes in Africa. Sustainable production and consumption, 31, 67-81, doi: https://doi.org/10.1016/j.spc.2022.02.002.

Qi, W.K., Liu, L.F., Shi, Q., Wang, C., Li, Y.Y. and Peng, Y. (2021). Detailed composition evolution of food waste in an intermittent self-agitation anaerobic digestion baffled reactor. Bioresource Technology, 320(Part A), doi: https://doi.org/10.1016/j.biortech.2020.124342.

Tetteh, E.K. and Rathilai S. (2021). Biogas production from wastewater treatment-evaluating anaerobic and biomagnetic systems. Water-Energy Nexus, 4, 165-173, doi: https://doi.org/10.1016/j.wen.2021.11.004.

Westerholm, M., Liu, T. and Schnurer, A. (2020). Comparative study of industrial-scale high-solid biogas production from food waste: Process operation and microbiology. Bioresource Technology, 304, doi: https://doi.org/10.1016/j.biortech.2020.122981.

Zwain, H.M., Hassan, S.R., Zaman, N.Q., Aziz, H.A. and Dahlan, I. (2013). The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater. Journal of Environmental Chemical Engineering, 1(1-2), 61-64, doi: https://doi.org/10.1016/j.jece.2013.03.007.