The Effects of Container Wall Friction on the Vertical Vibrating Convection Pattern for Granular Materials

Main Article Content

Panupat Chaiworn
Suparat Hankwang
Vilaiporn Luksameevanish
Pensri Pramukkul

Abstract

The research aimed to study the effects of container wall friction on the vertical vibrating convection pattern for granular materials. The both cylindrical particles of sizes used were diameter 6 millimeters (mm), length 6 centimeters (cm), at 460 particles and diameter 12 mm, length 6 cm, at 115 particles, respectively, which were randomly and layered placed inside rectangular containers with different wall friction such as acrylic, foil, velvet, and No. 400 sandpaper. The granular materials were vertically vibrated with the amplitude of 5 mm, the frequency of 12.21 Hertz (Hz) and dimensionless acceleration of 3. The results revealed that the granular materials were on granular media. After that the granular materials slowly moved to the side, center and top of the containers again. The movement in one cycle is called “convection”. The materials on the left moved sideways in anticlockwise direction and those on the right moved sideways in the clockwise direction. In case of friction coefficient between granular materials and wall being 0.790 and 0.825, the granular materials could move fast causing kinetic energy. When the friction coefficient between granular materials and wall is 0.376 and 0.432, the materials would move to the side and were unable to move to the center. Their movement was static, or they hardly moved due to low friction coefficient between granular materials and wall, making the materials moved slowly and yielding low kinetic energy.

Article Details

Section
บทความวิจัย (Research Articles)

References

สกนธ์ คล่องบุญจิต. (2552). การศึกษาอิทธิพลของปรากฏการณ์การหมุนวนกับการผสมกันของระบบวัสดุเม็ดกลมในภาชนะบรรจุเชิง 2 มิติด้วยเทคนิคการจำลองเหตุการณ์แบบวัสดุเม็ดนิ่ม. วิศวสารลาดกระบัง, 26(4), 31-36.

อภินทร์รัตน์ ขันแกล้ว มนัญชัย ไชยเพศ วิรยา หลังหลี และพิชญา ทิพย์ศรี. (2022). การวัดความเร็วปลายในการตกของโลหะทรงกลมรัศมีแตกต่างกันในกลีเซอรีนโดยใช้ตัวตรวจจับเวลาที่ควบคุมด้วยคอมพิวเตอร์. วารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช, 41(2), 1-15.

Chaiworn, P., Chung, F.F. and Liaw, S.S. (2014). Pseudo 2-dimensional trajectory of a particle in vibrating granular bed. International Journal of Applied Physics and Mathematics, 4(1), 27-30, doi: https://doi.org/10.7763/IJAPM.2014.V4.249.

Fortini, A. and Huang, K. (2015). Role of defects in the onset of wall-induced granular convection. Physical Review E, 91(3), doi: https://doi.org/10.1103/PhysRevE.91.032206.

Klongboonjit, S. and Campbell, C.S. (2008). Convection in deep vertically shaken particle beds. I, General Features. Physics of Fluids, 20(10), doi: https://doi.org/10.1063/1.2996134.

Liu, C., Wu, P., Wang, L., Tong, L. and Yin, S. (2017). Patterns of granular convection and separation in narrow vibration bed. EPJ Web of Conferences, 140(1), doi: https://doi.org/10.1051/epjconf/201714003031.

Menbari, A. and Hashemnia, K. (2020). Studying the particle size ratio effect on granular mixing in a vertically vibrated bed of two particle types. Particuology, 53(1), 100-111, doi: https://doi.org/10.1016/j.partic.2020.01.007.

Qiao, J., Duan, C., Dong, K., Wang, W., Jiang, H., Zhu, H. and Zhao, Y. (2021). DEM study of segregation degree and velocity of binary granular mixtures subject to vibration. Powder Technology, 382(1), 107-117, doi: https://doi.org/10.1016/j.powtec.2020.12.064.

Wibowo, H.A.C., Ain, T.N., Nugraha, Y.P., Aji, D.P.P., Khotimah, S.N. and Viridi, S. (2016). Experimental study of granular convection in (real) two-dimension Brazil-nut effect. Journal of Physics: Conference Series, 739(1), doi: https://doi.org/10.1088/1742-6596/739/1/012053.

Xiu, W., Lib, R., Chen, Q., Sun, Q. Zivkovic, V. and Yang, H. (2023). Prediction of segregation characterization based on granular velocity and concentration in rotating drum. Particuology, 73(1), 17-25, doi: https://doi.org/10.1016/j.partic.2022.03.008.

Xue, K., Zheng, Y., Fan, B., Li, F. and Bai, C. (2013). The origin of granular convection in vertically vibrated particle beds: The differential shear flow field. The European Physical Journal E, 36(8), 1-11, doi: https://doi.org/10.1140/epje/i2013-13008-1.

Zhang, K., Zhong, H., Chen, T., Kou, F., Chen, Y. and Bai, C. (2022). Dissipation behaviors of granular balls in a shaken closed container. Mechanical Systems and Signal Processing, 172(1), doi: https://doi.org/10.1016/j.ymssp.2022.108986.

Zhang, X., Zhang, D., Wang, Y., Ji, S. and Zhao, H. (2023). Dynamic characteristics of sphere impact into wet granular materials considering suction. Granular Matter, 25(1), doi: https://doi.org/10.1007/s10035-022-01304-9.