Growth and Seed Quality Responses of Soybean (Glycine max (L.) Merr. var. Chiang Mai 60) in Full Bloom Stage Sprayed with Calcium Chloride under Water Deficit

Main Article Content

Saowalak Banthoengsuk
Waraluk Boonmachai

Abstract

The objective of this study was to study growth and seed quality responses of soybean var. Chiang Mai 60 at full bloom stage sprayed by calcium chloride (CaCl2) with different concentrations (0, 20, 40 or 60 millimolar (mM)) under water deficit for 7 days in the greenhouse of Chiang Mai Seed Research and Development Center, Nong Han, San Sai, Chiang Mai province. The result showed that spraying CaCl2 under water deficit had no effect on the plant height, number of nodes per plant, number of branches per plant, number of pods per plant, weight per 100 seeds, total seed weight, seed germination rate, hard seed percentage, dead seed percentage, germination index, seed moisture content, protein content, and lipid content. However, the soybean sprayed with 60 mM CaCl2 showed the greatest seed width and length. In addition, the abnormal germination rate was increased when it was not supplemented with CaCl2 (0 mM).

Article Details

Section
บทความวิจัย (Research Articles)

References

กรมวิชาการเกษตร. (2563). เทคโนโลยีการผลิตถั่วเหลือง. กรุงเทพฯ: สถาบันวิจัยพืชไร่และพืชทดแทนพลังงาน กระทรวงเกษตรและสหกรณ์.

คงเอก ศิริงาม. (2558). ผลของสภาวะขาดน้ำต่อการรั่วไหลของสารอิเล็กโทรไลต์ ปริมาณรงควัตถุ ปริมาณโพรลีนและการเจริญเติบโตของข้าว. Thai Journal of Science and Technology, 4(2), 133-146.

จักรพงษ์ กางโสภา เพชรรัตน์ จี้เพชร และสุรีมาศ จันต๊ะอินทร์. (2565). ความงอก ความแข็งแรง และการเจริญเติบโตของต้นกล้าถั่วเหลือง หลังการเคลือบและพอกเมล็ดพันธุ์ร่วมกับ Bacillus subtilis. วารสารวิจัย มหาวิทยาลัยเทคโนโลยีราชมงคลศรีวิชัย, 14(1), 266-281.

สมชาย ผะอบเหล็ก. (2558). การวิจัยและพัฒนาถั่วเหลือง. รายงานวิจัย. กรมวิชาการเกษตร.

อนันต์ พิริยะภัทรกิจ พัชรี เดชเลย์ พรกมล รูปเลิศ และปุญญพัฒน์ พลพิมพ์. (2023). ผลของปุ๋ยสังกะสีที่ให้ทางใบต่อผลผลิตและความเข้มข้นของสังกะสีของข่า. วารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช, 42(1), 14-23.

อาทิตยา ยอดใจ และจักรี เส้นทอง. (2553). ผลของการขาดน้ำในระยะการเจริญพันธุ์ต่อการเติบโตและผลผลิตของถั่วเหลือง. วารสารเกษตร, 26(3), 251-260.

Ahmad, P., Sarwat, M., Bhat, N.A., Wani, M., Kazi, A.G. and Tran, L.S. (2015). Alleviation of cadmium toxicity in Brassica juncea L. by calcium application involves various physiological and biochemical strategies. PLOS ONE, 10(1), 114-571, doi: https://doi.org/10.1371/journal.pone.0114571.

Bajaj, S., Chen, P., Longer, D.E., Shi, A., Hou, A., Ishibashi, T. and Brye, K.R. (2008). Irrigation and planting date effects on seed yield and agronomic traits of early-maturing soybean. Journal of Crop Improvement, 22(1), 47-65, doi: https://doi.org/10.1093/jexbot/53.366.13.

Batistic, O. and Kudla, J. (2012). Analysis of calcium signaling pathways in plants. Biochimica et Biophysica Acta (BBA) - General Subjects, 1820(8), 1283-1293, doi: https://doi.org/10.1016/j.bbagen.2011.10.012.

Bellaloui, N., Mengistu, A., Fisher, D.K. and Abel, C.A. (2012). Soybean seed composition constituents as affected by drought and Phomopsisin phomopsis susceptible and resistant genotypes. Journal of Crop Improvement, 26(2), 428-453, doi: https://doi.org/10.1080/15427528.2011.651774.

Bruce, W.B., Edmeades, G.O. and Barker, T.C. (2002). Molecular and physiological approaches to maize improvement for drought tolerance. Journal of Experimental Botany, 53(366), 13-25, doi: https://doi.org/10.1093/jexbot/53.366.13.

Cerezini, P., Kuwano, B.H., dos Santos, M.B., Terassi, F., Hungria, M. and Nogueira, M.A. (2016). Strategies to promote early nodulation in soybean under drought. Field Crops Research, 196, 160-167, doi: https://doi.org/10.1016/j.fcr.2016.06.017.

Colorado, P., Rodriguez, A., Nicolas, G. and Rodriguez, D. (1994). Abscisic acid and stress regulate gene expression during germination of chickpea seeds, possible role of calcium. Physiologia Plantarum, 91(3), 461-467, doi: https://doi.org/10.1111/j.1399-3054.1994.tb02975.x.

Cousson, A. (2009). Involvement of phospholipase C-independent calcium-mediated abscisic acid signaling during Arabidopsis response to drought. Biologia Plantarum, 53, 53-62, doi: https://doi.org/10.1007/s10535-009-0008-0.

Cunniff, P. (1995). Official methods of analysis of the association of official analytical chemists. (16th ed). Washington, DC: Association of Official Analytical Chemists.

Dong, J., Xiao, X., Wagle, P., Zhang, G., Zhou, Y., Jin, C., Torn, M.S., Meyers, T.P., Suyker, A.E., Wang, J., Yan, H., Biradar, Ch. and Moore, Moore, B. (2015). Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought. Remote Sensing of Environment, 162, 154-168, doi: https://doi.org/10.1016/j.rse.2015.02.022.

Dong, S., Wang, W., Jiang, Y., Ma, Z., Yan, C., Liu, L. and Cui, G. (2019). Antioxidant and proteomic analysis of soybean response to drought during soybean flowering. Ekoloji, 28, 2041-2052.

El-Gamal, S.M.A., El-Din, W.M.S., Farouk, S. and Moktar, N.A.Y.O. (2021). Integrated effects of biochar and potassium silicate on borage plant under different irrigation regimes in sandy soil. Journal of Horticultural Science & Ornamental Plants, 13(1), 60-76.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212, doi: https://doi.org/10.1051/agro:2008021.

Gercek, S., Boydak, E., Okant, M. and Dikilitas, M. (2009). Water pillow irrigation compared to furrow irrigation for soybean production in a semi-arid area. Agricultural Water Management, 96(1), 87-92, doi: https://doi.org/10.1016/j.agwat.2008.06.006.

Gobinathan, P., Affaq, M., Murali, P.V., Somasundaram, R. and Panneerselvam, R. (2011). Interactive effects of sodium chloride and calcium chloride on biochemical constituents and proline metabolism of Pennisetum glaucum (L.) R. British Journal of Pharmaceutical Research, 8(4), 2842-2845.

Hao, L., Wang, Y., Zhang, J., Xie, Y., Zhang, M., Duan, L. and Li, Z. (2013). Coronatine enhances drought tolerance via improving antioxidative capacity to maintaining higher photosynthetic performance in soybean. Plant Science, 210, doi: https://doi.org/10.1016/j.plantsci.2013.05.006.

He, J., Du, Y.L., Wang, T., Turner, N.C., Yang, R.P., Jin, Y., Xi, Y., Zhang, C., Cui, T., Fang, X.W. and Li, F.M. (2017). Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agricultural Water Management, 179, 236-245, doi: https://doi.org/10.1016/j.agwat.2016.07.008.

Hussain, N., Yasmeen, A., Yousaf, M.M., Malik, W., Naz, S., Qadir, I., Saddiq, B., Shaheen, A. and Iqbal, R. (2022). Exogenously applied nutrients can improve the chickpea productivity under water stress conditions by modulating the antioxidant enzyme system. Brazilian Journal of Biology, 82, doi: https://doi.org/10.1590/1519-6984.236251.

Ibrahim, M.F.M. (2014). Induced drought resistance in common bean (Phaseolus vulgaris L.) by exogenous application with active yeast suspension. Middle East journal of applied sciences, 4(4), 806-815.

Ibrahim, M.F.M., Bondok, A.M., Al-Senosy, N.K. and Rania, A.A.Y. (2015). Stimulation some of defense mechanisms in tomato plants under water deficit and tobacco mosaic virus (TMV). World Journal of Agricultural Research, 11(5), 289-302.

Ibrahim, M.F.M., Faisal, A. and Shehata, S.A. (2016). Calcium chloride alleviates water stress in sunflower plants through modifying some physio-biochemical parameters. American-Eurasian Journal of Agricultural & Environmental Sciences, 16(4), 677-693, doi: https://doi.org/10.5829/idosi.aejaes.2016.16.4.12907.

Khan, M.B., Hussain, M., Raza, A., Farooq, S. and Jabran, K. (2015). Seed priming with CaCl2 and ridge planting for improved drought resistance in maize. Turkish Journal of Agriculture and Forestry, 39(2), 193-203, doi: https://doi.org/10.3906/tar-1405-39.

Khushboo, Y., Bhardwaj, K., Singh, P., Raina, M., Sharma, V. and Kumar, D. (2018). Exogenous application of calcium chloride in wheat genotypes alleviates negative effect of drought stress by modulating antioxidant machinery and enhanced osmolyte accumulation. In Vitro Cellular & Developmental Biology, 54(3), doi: https://doi.org/10.1007/s11627-018-9912-3.

Li, D., Liu, H., Qiao, Y., Wang, Y., Cai, Z., Dong, B., Shi, Ch., Liu, Y., Li, X. and Liu, M. (2013). Effects of elevated CO2 on the growth, seed yield, and water use efficiency of soybean (Glycine max (L.) Merr.) under drought stress. Agricultural Water Management, 129, 105-112, doi: https://doi.org/10.1016/j.agwat.2013.07.014.

The International Seed Testing Association (ISTA). (1999). International rule for seed testing. Supplement to Seed Science and Technology, 27, 45-51.

Liu, F., Jensen. Ch.R. and Andersen, M.N. (2004). Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: Its implication in altering pod set. Field Crops Research, 86(1), 1-13, doi: https://doi.org/10.1016/S0378-4290(03)00165-5.

Loggini, B., Scartazza, A., Brugnoli, E. and Navari-Izzo, F. (1999). Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology, 119(3), 1091-1100, doi: https://doi.org/10.1104/pp.119.3.1091.

Manavalan, L.P., Guttikonda, S.K., Tran, L.S.P. and Nguyen, H.T. (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant and Cell Physiology, 50(7), 1260-1276, doi: https://doi.org/10.1093/pcp/pcp082.

Mubarik, N., Iqbal, A., Munir I. and Arif, M. (2018). Alleviation of adverse effects of water stress on Zea mays (Cv. Azam) by exogenous application of CaCl2. Sarhad Journal of Agriculture, 34(2), 327-333, doi: https://doi.org/10.17582/journal.sja/2018/34.2.327.333.

Munne-Bosch, S. and Alegre, L. (2000). Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus offcinalis plants. Planta, 210(6), 925-931, doi: https://doi.org/10.1007/s004250050699.

Mutava, R.N., Prince, S.J.K., Syed, N.H., Song, L., Valliyodan, B., Chen, W. and Nguyen, H.T. (2015). Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress. Plant Physiology and Biochemistry, 86, 109-120, doi: https://doi.org/10.1016/j.plaphy.2014.11.010.

Parida, A.K., Dagaonkar, V.S., Phalak, M.S., Umalkar, G.V. and Aurangabadkar, L.P. (2007). Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Reports, 1, 37-48, doi: https://doi.org/10.1007/s11816-006-0004-1.

Rosa, V.R., Santos, A.L.F., Silva, A.A., Sab, M.P.V., Germino, G.H., Cardoso, F.B. and Silva, M.A. (2021). Increased soybean tolerance to water deficiency through biostimulant based on fulvic acids and Ascophyllum nodosum (L.) seaweed extract. Plant Physiology and Biochemistry, 158, 228-243, doi: https://doi.org/10.1016/j.plaphy.2020.11.008.

Sapeta, H., Costa, J.M., Lourenço, T., Maroco, J., van der Linde, P. and Oliveira, M.M. (2013). Drought stress response in Jatropha curcas: Growth and Physiology. Environmental and Experimental Botany, 85, 76-84, doi: https://doi.org/10.1016/j.envexpbot.2012.08.012.

Sekmen, A.H., Ozgur, R., Uzilday, B. and Turkan, I. (2014). Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environmental and Experimental Botany, 99, 141-149, doi: https://doi.org/10.1016/j.envexpbot.2013.11.010.

Shah, W., Zaman, N., Ullah, S. and Nafees, M. (2022). Calcium chloride enhances growth and physio-biochemical performance of barley (Hordeum vulgare L.) under drought-induced stress regimes: A future perspective of climate change in the region. Journal of Water Climate Change, 13(9), 3357-3378, doi: https://doi.org/10.2166/wcc.2022.134.

Silva, E.C., Nogueira, R.J.M.C., Vale, F.H.A., Melo, N.F. and Araujo, F.P. (2009). Water relations and organic solutes production in four umbu tree (Spondias tuberosa) genotypes under intermittent drought. Brazilian Journal of Plant Physiology, 21(1), 43-53. doi: https://doi.org/10.1590/S1677-04202009000100006.

Somtrakoon, K. and Chouychai, W. (2022). Effect of salicylic acid and calcium chloride on growth of corn under water stress condition. Journal of Agricultural Sciences-Sri Lanka, 17(2), 350-359, doi: https://doi.org/10.4038/jas.v17i2.9747.

Upadhyaya, H., Panda, S.K. and Dutta, B.K. (2011). CaCl2 improves post-drought recovery potential in Camellia sinensis (L) O. Kuntze. Plant Cell Reports, 30(4), 495-503, doi: https://doi.org/10.1007/s00299-010-0958-x.

Vurukonda, S.S.K.P., Vardharajula, S., Shrivastava, M. and SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13-24, doi: https://doi.org/10.1016/j.micres.2015.12.003.

Wijewardana, C., Alsajri, F.A., Irby, J.T., Golden, B.R., Henry, W.B. and Reddy, K.R. (2019). Water deficit effects on soybean root morphology and early-season vigor. Agronomy, 9(12), doi: https://doi.org/10.3390/agronomy9120836.

Wijewardana, C., Reddy, K.R., Alsajri, F.A., Irby, J.T., Krutz, J. and Golden, B.R. (2018). Quantifying soil moisture deficit effects on soybean yield and yield component distribution patterns. Irrigation Science, 36(4-5), 241-255, doi: https://doi.org/10.1007/s00271-018-0580-1.

Xiang, J., Chen, Z., Wang, P., Yu, L. and Li, M. (2008). Effect of CaCl2 treatment on the changing of drought related physiological and biochemical indexes of Brassica napus. Frontiers of Agriculture in China, 2(4), 423-427, doi: https://doi.org/10.1007/s11703-008-0056-9.

Xu, C., Li, X. and Zhang, L. (2013). The effect of calcium chloride on growth, photosynthesis and antioxidant responses of Zoysia japonica under drought conditions. PLOS ONE, 8(7), doi: https://doi.org/10.1371/journal.pone.0068214.