The Effect of Native Glucomannan on Growth Activity and Acid Production of Lactic Acid Bacteria

Main Article Content

Aunchaya Nakajad
Isarawut Prasertsung
Pariyaporn Itsaranuwat

Abstract

This work aimed to study the effects of native glucomannan on the growth and acid production of the bacterium Lactococcus lactis A7 in comparison with two commercial probiotic strains, L. pentosus and L. Acidophilus.From the results, it was found that the native glucomannan was found to be composed of two molecular weight fractions: high molecular weight glucomannan (1.9×106 Da) and low molecular weight glucomannan (1.4×103 Da), accounting for 58.08% and 41.92%, respectively, with polydispersity index (PDI) values of 1.6 and 1.2. Evaluation of its prebiotic properties in promoting probiotic growth revealed comparable growth trends, with the highest optical density (OD) values observed at 0.83±0.03, 0.70±0.01, 0.66±0.01, and 0.60±0.03 for L. lactis A7, L. pentosus, L. acidophilus, and inulin (control), respectively. Notably, L. lactis A7 cultured with native glucomannan exhibited enhanced growth compared to the inulin control, with the lowest pH recorded at 24 hours (5.75±0.02). Additionally, the highest prebiotic index (PI) values were observed at 1.23, 0.74, and 0.63 for L. lactis A7, L. pentosus, and L. acidophilus, respectively.

Article Details

How to Cite
Nakajad, A., Prasertsung, I., & Itsaranuwat, P. (2025). The Effect of Native Glucomannan on Growth Activity and Acid Production of Lactic Acid Bacteria. Wichcha Journal Nakhon Si Thammarat Rajabhat University, 44(1), 1–12. https://doi.org/10.65217/wichchajnstru.2025.v44i1.262311
Section
Research Articles

References

Anggela, A., Harmayani, E., Setyaningsih, W. and Wichienchot, S. (2022). Prebiotic effect of porang oligo-glucomannan using fecal batch culture fermentation. Food Science and Technology, 42, doi: https://doi.org/10.1590/fst.06321.

Ariestanti, C.A., Seechamnanturakit, V., Harmayani, E. and Wichienchot, S. (2019). Optimization on production of konjac oligo-glucomannan and their effect on the gut microbiota. Food Science & Nutrition, 7(2), 788-796, doi: https://doi.org/10.1002/fsn3.927.

Boonkla, W., Kerdsin, A. and Itsaranuwat, P. (2024) Antioxidant activities of Boesenbergia rotunda (L.) Mansf. fermented with lactic acid bacteria. Wichcha Journal Nakhon Si Thammarat Rajabhat University, 43(2), 66-75, doi: https://doi.org/10.65217/wichchajnstru.2024.v43i2.260335.

Byczkowski, J.Z. and Gessner, T. (1988). Biological role of superoxide ion-radical. International Journal of Biochemistry, 20(6), 569-580, doi: https://doi.org/10.1016/0020-711X(88)90095-X.

Chyba, C.F. and Sagan, C. (1997). Comets as a source of prebiotic organic molecules for the early earth. In Thomas, P.J., Chyba, C.F. and McKay, C.P. (Eds.). Comets and the origin and evolution of life, pp. 147-173. New York: Springer.

Daeschel, M.A. (1989). Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technology, 43(1), 164-167.

Ellegård, L., Andersson, H. and Bosaeus, I. (1997). Inulin and oligofructose do not influence the absorption of cholesterol, or the excretion of cholesterol, Ca, Mg, Zn, Fe, or bile acids but increases energy excretion in ileostomy subjects. European Journal of Clinical Nutrition, 51(1), 1-5, doi: https://doi.org/10.1038/sj.ejcn.1600320.

Gibson, G.R. and Roberfroid, M.B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. The Journal of Nutrition, 125(6), 1401-1412, doi: https://doi.org/10.1093/jn/125.6.1401.

Gibson, R.S. (2005). Principles of nutritional assessment. (2nd ed). New York: Oxford University Press.

Harman, G.E., Lorito, M. and Lynch, J.M. (2004). Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Advances in Applied Microbiology, 56, 313-330, doi: https://doi.org/10.1016/S0065-2164(04)56010-0.

Huebner, J., Wehling, R.L., Parkhurst, A. and Hutkins, R.W. (2008). Effect of processing conditions on the prebiotic activity of commercial prebiotics. International Dairy Journal, 18(3), 287-293, doi: https://doi.org/10.1016/j.idairyj.2007.08.013.

Khanna, S. (2003). The chemical, physical and nutritional properties of the plant polysaccaride konjac glucomannan. Ph.D. thesis in Doctoral Dissertation, Glasgow Caledonian University, Glasgow.

Kolida, S., Tuohy, K. and Gibson, G.R. (2002). Prebiotic effects of inulin and oligofructose. British Journal of Nutrition, 87(suppl 2), S193-S197, doi: https://doi.org/10.1079/BJN/2002537.

Kong, S. and Davison, A.J. (1980). The role of interactions between O2, H2O2,·OH, e- and O2- in free radical damage to biological systems. Archives of Biochemistry and Biophysics, 204(1), 18-29, doi: https://doi.org/10.1016/0003-9861(80)90003-X.

Li, F., Sun, X., Yu, W., Shi, C., Zhang, X., Yu, H. and Ma, F. (2021). Enhanced konjac glucomannan hydrolysis by lytic polysaccharide monooxygenases and generating prebiotic oligosaccharides. Carbohydrate Polymers, 253, doi: https://doi.org/10.1016/j.carbpol.2020.117241.

Plongbunjong, V., Graidist, P., Knudsen, K.E.B. and Wichienchot, S. (2017). Isomaltooligosaccharide synthesised from rice starch and its prebiotic properties in vitro. International Journal of Food Science & Technology, 52(12), 2589-2595, doi: https://doi.org/10.1111/ijfs.13545.

Zheng, Q., Li, W., Liang, S., Zhang, H., Yang, H., Li, M. and Zhang, Y. (2019). Effects of ultrasonic treatment on the molecular weight and anti-inflammatory activity of oxidized konjac glucomannan. CyTA-Journal of Food, 17(1), 1-10, doi: https://doi.org/10.1080/19476337.2018.1541195.