ผลของระดับไนโตรเจนต่อการเจริญเติบโต การสะสมแคโรทีนอยด์ และไอโซเมอร์ 9-cis เบต้าแคโรทีนในสาหร่าย Dunaliella sp. NUAC09 สายพันธุ์ไทย
Main Article Content
บทคัดย่อ
Dunaliella เป็นสาหร่ายสีเขียวขนาดเล็กที่มีความสำคัญสำหรับการผลิตสารรงควัตถุธรรมชาติเบต้าแคโรทีนธรรมชาติ ซึ่งเป็นสารที่มีความสำคัญทางเศรษฐกิจ และมีคุณสมบัติในการต้านอนุมูลอิสระที่มีประสิทธิภาพสูง โดยสารกลุ่มนี้ถูกนำไปใช้ทั้งในอุตสาหกรรมที่หลากหลายเช่น ด้านโภชนาการ เภสัชศาสตร์ และเครื่องสำอาง เป็นต้น งานวิจัยนี้มุ่งเน้นเพื่อตรวจสอบการเจริญเติบโต การสะสมรงควัตถุและสัดส่วนไอโซเมอร์ cis และ trans เบต้าแคโรทีนของสาหร่าย Dunaliella sp. NUAC09 สายพันธุ์ไทย ภายใต้ปริมาณที่แตกต่างกัน (0.0, 0.2, 0.5, 1.0 และ 2.0 g/L) ของไนโตรเจน (KNO3) ในสูตรอาหาร Johnson ผลการทดลองพบว่าการเจริญเติบโต (0.82 µ/day) จำนวนเซลล์ (4.38×106 cell/mL) และปริมาณคลอโรฟิลล์เอ (13.79 µg/mL) ที่เหมาะสมสุดในสายพันธุ์ทดสอบที่เลี้ยงด้วยระดับไนโตรเจน 2.0 g/L ขณะที่ปริมาณแคโรทีนอยด์รวมสูงที่สุด (53.14 µg/mL) พบในสาหร่ายที่เพาะเลี้ยงในระดับไนโตรเจน 0.2 g/L เมื่อตรวจสอบด้วยใช้เทคนิค HPLC พบว่าปริมาณของไอโซเมอร์ all-trans และ 9-cis เบต้าแคโรทีนพบสูงที่สุด เท่ากับ 519.0 ± 84.4 และ 328.7 ± 53.9 mg/g DW ในสาหร่ายที่เพาะเลี้ยงที่ระดับไนโตรเจน 0.0 g/L ดังนั้นการศึกษานี้แสดงให้เห็นว่าปริมาณไนโตรเจนมีผลต่อการเพิ่มแคโรทีนอยด์และปริมาณไอโซเมอร์เบต้าแคโรทีนของสาหร่าย NUAC09
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ahmed, RA., M. He, RA. Aftab, S. Zheng, M. Nagi, R. Bakri, and C. Wang. 2017. Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production. Scientific reports. 7(1): 8118.
Andersen, R.A. 2005. Algal culturing techniques. Academic Press, USA., ISBN: 9780120884261.
Arumugam, M., A. Agarwal, M.C. Arya, and Z. Ahmed. 2013. Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresource Technology. 131: 246–249.
Ben-Amotz, A., J. Gressel, and M. Avron. 1987. Massive accumulation of phytoene induced by norflurazon in Dunaliella bardawil (Chlorophyceae) prevents recovery from photoinhibition. Journal of Phycology. 23: 176–181.
Bononi, M., I. Commissati, E. Lubian, A. Fossati, and F. Tateo. 2002. A simplified method for the HPLC resolution of Alpha - carotene and ß – carotene (trans and cis) isomers. Analytical and Bioanalytical Chemistry. 372(2): 401–403.
Borowitzka, M.A. 1988. Algal media and sources of algal cultures. In Borowitzka, M.A. and L.J. Borowitzka. Eds. Microalgal Biotechnology. Cambridge University Press, Cambridge. 456–465.
Braun, L. 2015. Herbs and natural supplements an evidence-based guide, Marc Cohen. Chatswood, NSW: Elsevier Australia.
Davidi, L., and U. Pick. 2017. Novel 9-cis/all-trans ß-carotene isomerases from plastidic oil bodies in Dunaliella bardawil catalyze the conversion of all-trans to 9-cis ß -carotene. Plant Cell Reports. 36: 807–814.
Fazeli, M.R., H. Tofighi, A. Madadkar-Sobhani, AR.Shahverdi, T. Nejad-Sattari, S. Mirzaie, and H. Jamalifar. 2009. Nicotine inhibition of lycopene cyclase enhances accumulation of carotenoid intermediates by Dunaliella salina CCAP 19/18. European Journal of Phycology. 44(2): 215–220.
Gomez, PI., A. Barriga, A.S. Ifuentes, and M.A. Gonzalez. 2003. Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) chlorophyta. Biological research. 36: 185-192.
Herrero, C., J. Abalde, and J. Fabregas. 1991. Beta carotene, vitamin C and vitamin E content of the marine microalgae Dunaliella teriolecta cultured with different nitrogen sources. Bioresource Technology. 38: 121–125.
Hu, CC., JT. Lin, FJ. Lu, FP. Chou, and DJ. Yang. 2008. Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. Food Chemistry. 109(2): 439–446.
Jian-Guo, L., W. Chao-Yuan, C. Nian-Hong, W. Yu-Jun, and Y. Li-Dong. 1996. Effect of nitrate and phosphate on accumulation of ß-carotene isomers in Dunaliella salina. Chinese Journal of Oceanology and Limnology. 14: 165–169.
Kharati-Koupaei, M., and A. Moradshahi. 2016. Effects of sodium nitrate and mixotrophic culture on biomass and lipid production in hypersaline microalgae Dunaliella Viridis Teod. Brazilian Archives of Biology and Technology, Agricultura. Agribusiness and Biotechnology. 59: 1–10.
Levin, G., and S. Mokady. 1994. Antioxidant activity of 9-cis compared to all-trans beta- carotene in vitro. Free Radical Biology and Medicine. 17(1): 77–82.
Lin, JT., YC. Lee, CC. Hu, YC. Shen, FJ. Lu, and DJ. Yang. 2010. Evaluation of carotenoid extract from Dunaliella salina against cadmium induced cytotoxicity and transforming growth factor b1 induced expression of smooth muscle a-actin with rat liver cell lines. Journal of Food and Drug Analysis. 18: 301–306.
Lv, H., X. Cui, F. Wahid, F. Xia, C. Zhong, and S. Jia. 2016. Analysis of the physiological and molecular responses of Dunaliella salina to macronutrient deprivation. PLoS One. 11(3): 1–19.
Mai, T., P. Nguyen, T. Vo, H. Huynh, S. Tran, T. Nim, D. Tran, H. Nguyen, and P. Bui. 2017. Accumulation of lipid in Dunaliella salina under nutrient starvation condition. American Journal of Food and Nutrition. 5(2): 58–61.
Menegol, T., A.B. Diprat, E. Rodrigues, and R. Rech. 2017. Effect of temperature and nitrogen concentration on biomass composition of Heterochlorella luteoviridis. Food Science and Technology International. 37(Special issue): 28–37.
Orset, S.C., and A.J. Young. 2000. Exposure to low irradiances favors the synthesis of 9-cis beta, beta-carotene in Dunaliella salina (Teod.). Plant Physiology. 122: 609–618.
Orosa, M., D. Dranqueira, A. Cid and J. Abalde. 2005. Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresource Technology. 96: 373–378.
Pick, U., L. Karni and M. Avron. 1986. Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina. Plant Physiology. 81: 92–96.
Relevy, N.Z., R. Ruhl, A. Harari, I. Grosskopf, I.Barshack, A. Ben-Amotz, U. Nir, H.E. Gottlieb, Y. Kamari, D. Harats, and A. Shaish. 2015. 9-cis ß-carotene inhibits atherosclerosis development in female LDLR-/- mice. Functional Foods in Health and Disease. 5(2): 67–79.
Round, F.E. 1973. The Biology of the Algae. 2nd Edn., Edward Arnold Publishers, London, UK.
Sadighara, P., M. Saghafi, A. Erfanmanesh, and M. Mahdaviyekta. 2016. Antioxidant activity and properties of outer shell pistachios in different temperature of cooking. Der Pharmacia Lettre. 8(12): 263–266.
Sathasivam, R., P. Pongpadung, J. Praiboon, A. Chirapart, S. Trakulnaleamsai, S. Roytrakul, and N. Juntawong. 2018. Optimizing NaCl and KNO3 concentrations for high beta-carotene production in photobioreactor by Dunaliella salina KU11 isolated from saline soil sample. Chiang Mai Journal of Science. 45(1): 106–115.
Srinivasan, R., A. Mageswari, P. Subramanian, C. Suganthi, A. Chaitanyakumar, V. Aswini, and KM. Gothandam. 2018. Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions. Scientific Reports. 8: 69–72.
Telfer, A., A. Pascal, and A. Gall. 2008. Carotenoids in photosynthesis. In: Britton G, Liaaen-Jensen S, Pfander J (eds) Carotenoids, vol 4., Natural functions. Birkhauser. pp 265–308.
Weinrich, T., Y. Xu, C. Wosu, PJ. Harvey, and G. Jeffery. 2019. Mitochondrial Function, Mobility and Lifespan Are Improved in Drosophila melanogaster by Extracts of 9-cis ß-Carotene from Dunaliella salina. Marine Drugs. 17(5): 279.
Wu, Z., P. Duangmanee, P. Zhao, N. Juntawong, and C. Ma. 2016. The effects of light, temperature, and nutrition on growth and pigment accumulation of three Dunaliella salina strains isolated from saline soil. Jundishapur Journal of Microbiology. 1: 1–9.
Xu, Y., and P.J. Harvey. 2019. Carotenoid production by Dunaliella salina under red light. Antioxidants. 8(5): 123.
Xu, Y., and P.J. Harvey. 2019. Red light control of ß-Carotene isomerisation to 9-cis ß-carotene and carotenoid
accumulation in Dunaliella salina. Antioxidants. 8(5): 148.
Xu, Y., IM. Ibrahim, CI. Wosu, A. Ben-Amotz, and PJ. Harvey. 2018. Potential of new isolates of Dunaliella salina for natural ß-carotene production. Biology. 7(1): 14.