The Application of Trichoderma asperellum Powder to Control Sheath Blight Disease of Rice Caused by Rhizoctonia solani
Main Article Content
Abstract
The application of Trichoderma powder to control sheath blight disease of rice caused by Rhizoctonia solani was studied. Trichoderma sp. was isolated from soil samples in fruit crop cultivation area at Chanthaburi province. Trichoderma sp. (MC2560) was morphologically and molecularly identified. Molecular identification was carried out using ITS4 and ITS5 primers. The homology level of the isolate was checked using BLAST program. The isolate was identified as Trichoderma asperellum QT22046 accession number KY225608 with a homology level of 98.58%. T. asperellum was tested for antagonistic activities using dual culture method against R. solani on Potato Dextrose Agar (PDA). T. asperellum had shown a growth inhibition of R. solani at 42.10% and T. asperellum mycelium overgrown on R. solani colony at 0.56 cm per day. Growth of T. asperellum on PDA at 25-30°C had the fastest growth and colony full covering on culture media within 3 days, in contrast at 40°C showed non-growing. Efficacy of T. asperellum powder as biocontrol in controlling sheath blight disease of rice was examined under greenhouse condition. T. asperellum powder was suspended in buffer (0.2% carboxyl methyl cellulose, 0.5% chitosan and 1.0% tween80) with talcum as carrier. Inoculation with R. solani on rice plants variety RD41 at 50 days old in greenhouse was prepared by mix of mycelium disc with sterile paddy and husk, put in straw paper bag wrapping with aluminum net and placed between rice stems at water level. After that, T. asperellum with talcum was applied by spraying on the rice plants. Results showed that disease incidence of plants treated with T. asperellum powder at 40 g per 20 L was decrease at 42.01% and 37.31% after spraying 14 and 21 days, respectively, compared with control (inoculated rice plant without spraying).
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
ณรงค์ สิงห์บุระอุดม. 2558. การจัดการโรคพืช. พิมพ์ครั้งที่ 3. เอเชีย ดิจิทัล เพลส, กรุงเทพฯ.
นิพนธ์ ทวีชัย. 2550. การควบคุมโรคพืชโดยวิธีธรรมชาติ. บริษัทเท็กซ์เจอร์นัลพับลิเคชั่น จำกัด, กรุงเทพฯ.
บังอร น้อยใสย์, จิระเดช แจ่มสว่าง และวรรณวิไล อินทนู. 2561. ประสิทธิภาพของชีวภัณฑ์ Bacillus siamensis RRK1–Rif สูตรผงเปียกน้ำ ในการควบคุมโรคกาบใบแห้งและโรคเมล็ดด่างและการเพิ่มผลผลิตของข้าว. แก่นเกษตร. 46: 633–642.
ปัณณวิชญ์ เย็นจิตต์, ธิดา เดชฮวบ และวาริน อินทนา. 2561. การประยุกต์ใช้ร่วมกันของผงเชื้อ Trichoderma sp. และ Bacillus sp. ต่อการควบคุมโรคเมล็ดด่างที่เกิดจาก Bipolaris oryzae ในข้าว. วิทยาศาสตร์เกษตร. 49: 15–26.
พากเพียร อรัญนารถ, นงรัตน์ นิลพานิชย์, วิชิต ศิริสันธนะ และสมคิด ดิสถาพร. 2544. ประสิทธิภาพของชีวภัณฑ์ Bacillus subtilis ในการควบคุมโรคกาบใบแห้งของข้าว. วารสารวิชาการเกษตร. 19: 4–12.
วิชชุดา รัตนากาญจน์, รัศมี ฐิติเกียรติพงศ์, คะนึงนิจ ศรีวิไลย และสิทธ์ ใจสงฆ์. 2554. โรคข้าวและการป้องกันกำจัด. พิมพ์ครั้งที่ 2. สำนักวิจัยและพัฒนาข้าว กรมการข้าว, กรุงเทพฯ.
Abbas, A., D. Jiang, and Y. Fu. 2017. Trichoderma spp. as Antagonist of Rhizoctonia solani. Journal of Plant Pathology and Microbiology. 8: 1–9.
Benítez, T., M.A. Rincon, M.C. Limon, and C.A. Codon. 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology. 7: 249–260.
Boukaew, S. and P. Prasertsak. 2014. Suppression of rice sheath blight disease using a heat stable culture filtrate from Streptomyces philanthi RM-1–138. Crop Protection. 61: 1–10.
De Franca, S.K.S., A.F. Cardoso, D.C. Lustosa, E.M.L.S. Romos, M.C.C. De Filippi, and G.B. Da Silva. 2015. Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agronomy for Sustainable Development. 35: 317–324.
Gupta, A.K., M. Harish, M.K. Ria, M. Phulwaria and N.S. Shekhawat. 2011. Isolation of genomic DNA suitable for community analysis from mature trees adapted to arid environment. Gene. 487: 156–159.
Harman, G.E., C. R. Howell, A., Viterbo, I. Chet, and M. Lorito. 2004. Trichoderma species opportunistic, avirulent plant symbionts. Nature Reviews Microbiology. 2: 43–56.
Harman, G. E. 2006. Overview of mechanism and uses of Trichoderma spp. Phytopathology. 96: 190–194.
Jayaprakashvel, M., M. Selvakumar, K. Srinivasan, S. Ramesh, and N. Mathivanan. 2010. Control of sheath blight disease in rice by thermostable secondary metabolites of Trichoderma roseum MML003. European Journal of Plant Pathology. 126: 229–239.
Manoch, L., O. Piasai, T. Dethoup, J. Kokaew, and A. Eamcijan. 2009. Control of Rhizoctonia diseases of rice, corn and durian using soil and endophytic fungi in vitro, pp. 542-547. In Proceedings of the 47th Kasetsart University Annual Conference 17–20 March 2009. Bangkok, Thailand.
Mousumi, D M., M. Haridas, and A. Sabu. 2019. Biological control of black pepper and ginger pathogens, Fusarium oxysporum, Rhizoctonia solani and Phytophthora capsici, using Trichoderma spp. Biocatalysis and Agricultural Biotechnology. 17: 177–183.
Petrisor, C., A. Paica, and F. Constantinescu. 2016. Influence of abiotic factors on in vitro growth of Trichoderma strains. Proceedings of the Romanian Academy. 18: 11–14.
Rai, D., and A. K. Tewari. 2016. Shelf life studies of different formulations based on Trichoderma harzianum (Th14). Annals of Biological Research. 7: 1–5.
Samuels, G.J. and P.K. Hebbar. 2015. Trichoderma identification and Agricultural Applications. The American Phytopathological Society. APS Press. Minnesota, U.S.A.
Singh, A., M.S.M. Srivastava, S. Pandey, A. Sharma, and V. Kumar. 2014. Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virology & Mycology. 3: 1-7.
Tamreihao, K., D.S. Ningthoujam, S. Nimaichand, E. S. Singh, P. Reena, S.H. Salam, and N. Upendra. 2016. Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3–16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiological Research. 192: 260–270.
Viterbo, A., A. Wiest, Y. Brotman, I. Chet, and C. Kenerley. 2007. The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Molecular Plant Pathology. 8: 737–746.
White, T.J., Bruns, T., Lee, S. and J. Taylor. 1990. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J., Eds., PCR Protocols. A Guide to Methods and Applications, Academic Press, San Diego, U.S.A.
Zehra, A., M.K. Dubey, M. Meena, and R. S. Upadhyay. 2017. Effect of different environmental conditions on growth and sporulation of some Trichoderma species. Journal of Environmental Biology. 38: 197–203.