การใช้ถ่านเพื่อเป็นตัวคั่นการเคลื่อนที่ของเกลือในดินเค็มและผลต่อพืชที่ไวต่อความเค็ม

Main Article Content

ภาณุเดชา กมลมานิทย์
พฤกษา หล้าวงษา

บทคัดย่อ

ถ่านที่ผลิตโดยวิธีแบบดั้งเดิมถูกพิจารณาว่า มีคุณสมบัติในการลดการเคลื่อนที่ของไอออนเกลือผ่านชั้นหน้าตัดดิน งานวิจัยมีวัตถุประสงค์เพื่อ ศึกษาผลของการใช้ถ่านที่มีขนาดแตกต่างกันต่อการลดการเคลื่อนที่ของเกลือสู่ดินชั้นบนในสภาพคอลัมน์ที่ส่งผลต่อคุณสมบัติทางเคมีของดินบางประการและการเจริญเติบโตของพืชที่ไวต่อความเค็ม พืชที่ใช้ศึกษาคือกวางตุ้งฮ่องเต้ ชื่อสามัญ Pak Chai ชื่อวิทยาศาสตร์ Brassica chinensis var. chinensis วางแผนการทดลองแบบสุ่มในบล็อกสมบูรณ์ประกอบด้วย 6 กรรมวิธีทดลอง ได้แก่ 1) กรรมวิธีควบคุม (ดินที่ไม่ใส่ถ่าน), 2) ดิน + NaCl, 3) ดิน + ถ่านขนาด 1-2 mm, 4) ดิน + ถ่านขนาด 1-2 mm + NaCl, 5) ดิน + ถ่านขนาด < 1 mm และ 6) ดิน + ถ่านขนาด < 1mm + NaCl ทำการทดสอบปลูกพืชในทุกกรรมวิธี ผลการทดลองพบว่า ทุกกรรมวิธีที่มีการใส่ถ่านทั้งภายใต้สภาวะที่มีและไม่มีสารละลายเกลือส่งผลให้ค่า pH และ EC ของดินเพิ่มสูงขึ้นอย่างมีนัยสำคัญทางสถิติ (P ≤ 0.05) อย่างไรก็ตาม เมื่อพิจารณาค่า % relative changes of soil EC พบว่า การใส่ถ่านทั้ง 2 ขนาด (1-2 mm และ < 1mm) สามารถลดการเคลื่อนที่ของไอออนสารละลายเกลือสู่ดินชั้นบนได้อย่างชัดเจน (-6.1 % และ -9.06 % ตามลำดับ) เมื่อเทียบกับการไม่ใส่ถ่าน (87.14 %) การใส่ถ่านทั้ง 2 ขนาดภายใต้สภาวะที่มีสารละลายเกลือส่งผลให้การเจริญเติบโตของพืชมีค่าสูงกว่าการใส่ถ่านในดินปกติ โดยการใส่ถ่านขนาด 1-2 mm ภายใต้สภาวะเกลือส่งผลให้ความสูงต้น (19.33 cm) ความสูงยอด (7.43 cm) น้ำหนักแห้งต้น (1.36 g) และน้ำหนักแห้งราก (0.21 g) มีค่าสูงสุด ขณะเดียวกันการใส่ถ่านขนาด < 1mm และ 1-2 mm ในดินสภาวะที่ไม่มีสารละลายเกลือกลับส่งผลให้จำนวนใบพืชมีค่าสูงสุด (5.67 และ 5.33 ตามลำดับ) (P ≤ 0.05) งานวิจัยนี้ให้ข้อมูลถึงคุณสมบัติของถ่านในการดูดซับไอออนของเกลือตามช่วงเวลาที่สัมพันธ์กับการเจริญเติบโตของพืช

Article Details

บท
บทความวิจัย (research article)

References

กรมพัฒนาที่ดิน. ม.ป.ป. การจัดการแก้ไขปัญหาดินเค็ม. เอกสารทางวิชาการเผยแพร่. แหล่งข้อมูล: https://goo.gl/EPEFju. ค้นเมื่อ 13 มิถุนายน 2560.
กรมพัฒนาที่ดิน. 2559. ระบบนำเสนอแผนที่ชุดดิน (Soil Series) มาตราส่วน 1:25,000. ระบบสืบค้นและให้บริการแผนที่ online. แหล่งข้อมูล: https://goo.gl/vKVp4E. ค้นเมื่อ 15 สิงหาคม 2560.
บุปผา โตภาคงาม. 2549. ดินเค็มภาคตะวันออกเฉียงเหนือ. ภาควิชาทรัพยากรที่ดินและสิ่งแวดล้อม คณะเกษตรศาสตร์ มหาวิทยาลัยขอนแก่น. หน้า 263.
พัชรี ธีรจินดาขจร. 2549. หลักและวิธีการวิเคราะห์ดินทางเคมี. ภาควิชาทรัพยากรที่ดินและสิ่งแวดล้อม. คณะเกษตรศาสตร์ มหาวิทยาลัยขอนแก่น. หน้า 141.
Abdul Qados, A.M.S. 2011. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agric. Sci. 10: 7-15.
Andriolo, J.L., L.D. Gean, H.W. Maiquel, D.S.G. Rodrigo, and O.C.B. Gis. 2005. Growth and yield of lettuce plants under salinity. Hortic. Bras. 23: 931–934.
Antal, M. J., and M. Grønli. 2003. Tha art, science, and technology and charcoal production. Ind. Eng. Chem. Res. 42: 1619-1640.
Asai, H., B.K. Samson, H.M. Stephan, K. Songyikhangsuthor, Y. Inoue, T. Shiraiwa, and T. Horie. 2009. Biochar amendment techniques for upland rice production in Northern Laos: soil physical properties, leaf SPAD and grain yield. Field Crops Res. 111: 81–84.
Brodowski, S., B. John, H. Flessa, and W. Amelung. 2006. Aggregates-occluded black carbon in soil. Eur. J. Soil Sci. 57: 539-546.
Brodowski, S., W. Amelung, L. Haumaier, C. Abetz, and W. Zech. 2005. Morphological and chemical properties of black carbon in physical soil factions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma. 128: 116-129.
Bronick. C.J., and Lal, R. 2005. Soil structure and management: a review. Geoderma. 124: 3-22.
Butnan, S., J.L. Deenik, B. Toomsan, M.J. Antal, and P. Vityakon. 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma. 237-238: 105-116.
Cha-Um, S.K., K. Supaibulwattana, and C. Kirdmanee. 2009. Comparative effects of salt stress and extreme pH stress combined on glycinebetaine accumulation, photosynthetic abilities and growth characters of two rice genotypes. Rice Sci. 16: 274-282.
Chaganti, V.S.N. 2014. Evaluating the Potential of Biochars and Composts as Organic Amendments to Remediate a Saline-Sodic Soil Leached with Reclaimed Water. Ph.D. thesis in Soil and Water Sciences UC Riverside., University of California Riverside, US. 165 p.
Chan, K.Y., D.P. Heenan, and H.B. So. 2003. Sequestration of carbon and changes in soil quality under conservation tillage on light-textured soils in Australia: a review. Aust. J. Exp. Arig. 43: 325-334.
Chan, K.Y., Z.L. Van, A.I. Meszaros, A. Downie, and S. Joseph. 2008. Agronomic values of green waste biochar as a soil amendment. Soil Res. 45: 629-634.
Cheng C.H, J. Lehmann, J.E. Thies, S.D. Burton, and M.H. Engelhard. 2006. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 37: 1477–1488.
Dantus, B.F., L. Ribeiro, and C.A. Aragao. 2005. Physiological response of cowpea seeds to salinity stress. Rev. Bras. Sementes. 27: 144–148.
Deenik, J. L., A. Diarra, G. Uehara, S. Campbell, Y. Sumiyoshi, and M.J. Antal. 2011. Charcoal ash and volatile matter effects on soil properties and plant growth in an acid Ultisol. Soil Sci. 176: 336-345.
FAO. 1985. Irrigation water management: training manual No. 1 - introduction to irrigation. Food and Agriculture Organization of the United Nations. 152 p.
Gaskin, J.W., C. Steiner, K.C. Harris, C. Das, and B. Bibens. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. T. Asabe. 51: 2061-2069.
Hemmes, K., and W.I. Schmidt. 2009. Changes of biochar in soil. pp. 169-182. In: J. Lehmann and S. Joseph (eds). Biochar for environmental Management: Science and Technology. Earthscan, United Kingdoms.
Jindo, K., H. Mizumoto, Y. Sawada, M.A. Sanchez-Monedero, and T. Sonoki. 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences. 11: 6613-6621.
Kamolmanit, B., and A. Reungsang 2006. Effect of cassava pulp and swine manure compost on growing plants in Greenhouse. J. water environ. technol.. 4: 9-32.
Katsuhara, M., K. Kazuki, S. Mineo, H. Yasuyuki, H. Takahiko, and K. Kunihiro. 2003. Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants. Plant Cell Physiol. 44: 1378-1383.
Laird, D.A., P. Fleming, D.D. Davis, R. Horton, B. Wang, and D.L. Karlen. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158: 443-449.
Lakhdar, A., M. Rabhi, T. Ghnaya, F. Montemurro, N. Jedidi, and C. Abdelly. 2009. Effectiveness of compost use in salt-affected soil. J. Hazard. Mater. 171: 29-37.
Li, J., H. H. Xu, W.C. Liu, X.W. Zhang, and Y.T. Lu. 2015. Ethylene inhibits root elongation during alkaline stress through AUXIN1 and associated changes in auxin accumulation. Plant Physiol. 168: 1777-1791.
Major, J., M. Rondon, D. Molina, S. Riha, and J. Lehmann. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil. 333: 117-128.
Maksimović, I., M. Putnik-Delić, I. Gani, J. Marić, and Ž. Ilin. 2010. Growth, ion composition, and stomatal conductance of peas exposed to salinity. Cent. Eur. J. Biol. 5: 682-691.
Manchanda, G., and N. Garg. 2008. Salinity and its effects on the functional biology of legumes. Acta. Physiologiae. Plantarum. 30: 595-618.
Memon, S.A., X. Hou, and L.J. Wang. 2010. Morphological analysis of salt stress response of pak Choi. EJEAFChe. 9: 248–254.
Novak, J.M., I. Lima, B. Xing, J.W. Gaskin, C. Steiner, K.C. Das, M. Ahmedna, D. Rehrah, D.W. Watts, W.J. Busscher, and S. Harry. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy Sand. Annals Environ. Sci. 3: 195-206.
Patil, N.S., V.T. Apradh, and B.A. Karadge. 2012. Effects of alkali stress on seed germination and seedling growth of Vignaaconitifolia(Jacq.) Marechal. Phcog. J. 4: 77-80.
Puttaso, A., P. Vityakon, P. Saenjan, V. Trelo-ges and G. Cadisch. 2011. Relationship between residue quality, decomposition patterns, and soil organic matter accumulation in a tropical sandy soil after 13 years. Nutr. Cycl. Agroecosyst. 89: 159-174.
Qadir, M., A. Ghafoor, and G. Murtaza. 2000. Amelioration strategies for saline soils: a review. Land Degrad. Develop. 11: 501-521.
Rebellato, L., W.I. Woods, and E.G. Neves. 2009. Pre-Columbian settlement dynamics in the Central Amazon. pp.15-31. In: W.I. Woods, W.G. Teoxeira, J. Lehmann, C. Steiner, A.M.G.A. WinklerPrins and L. Rebellato. Amazonian Dark Earaths: Wim Sombroek’s Vision. Springer Science+Business Media B.V., London.
Racey, A. 2009. Mesozoic red bed sequences from SE Asia and the significance of the Khorat Group of NE Thailand. J. Geol. Soc. 315: 41-67.
Rui, L., S. Wei, C. Mu-xiang, J. Cheng-jun, W. Min, and Y. Bo-ping. 2009. Leaf anatomical changes of Burguiera gymnorrhiza seedlings under salt stress. J. Trop. Subtrop. Bot. 17: 169–175.
Taffouo, V.D., J.K. Kouamou, L.M.T. Ngalangue, B.A.N. Ndjeudji, and A. Akoa 2009. Effects of salinity stress on growth, ions partitioning and yield of some cowpea (Vigna ungiuculata L., walp) cultivars. Int. J. Bot. 5: 135–143.
Taffouo, V.D., O.F. Wamba, E. Yombi, G.V. Nono, and A. Akoe. 2010. Growth, yield, water status and ionic distribution response of three bambara groundnut (Vigna subterranean(L.) verdc.) landraces grown under saline conditions. Int. J. Bot. 6: 53–58.
Wu, Y., Xu, G., and H.B. Shao. 2014. Furfural and its biochar improve the general properties of a saline soil. Solid Earth. 5: 665-671.
Zhang, Y., J.I. Omololu, and E.B. Catherine. 2016. Using agricultural residue biochar to improve soil quality of desert soils. Agriculture. 6: 1-11.