ผลของการเสริมโพรไบโอติกและวิตามินซีในอาหารต่ออัตราการรอดชีวิตและฮอร์โมนคอร์ติซอลแม่พันธุ์ปลาดุกอุย
Main Article Content
บทคัดย่อ
การเสริมโพรไบโอติกชนิด Bacillus subtilis (BS 01) และอนุพันธ์วิตามินซีชนิด L-ascorbyl-2-monophosphate (AM) ในอาหารปลาดุกอุยเพศเมียก่อนการขนส่งโดยวางแผนการทดลองแบบสุ่มสมบูรณ์ (CRD) แบ่งเป็น 6 กลุ่มๆ ละ 3 ซ้ำ คือ กลุ่มที่ 1 อาหารควบคุม(G1) กลุ่มที่ 2 อาหารผสม BS01 0.75 กรัม และ AM 0.25 กรัม (G2) กลุ่มที่ 3 อาหารผสม BS01 0.50 กรัม และ AM 0.50 กรัม (G3) กลุ่มที่ 4 อาหารผสม BS01 0.25 กรัม และ AM 0.75 กรัม (G4) กลุ่มที่ 5 อาหารผสม BS01 1 กรัม (G5) กลุ่มที่ 6 อาหารผสม AM 1 กรัม (G6) น้ำหนักเริ่มต้นเฉลี่ย 125.00±1.54 กรัม ความหนาแน่น 20 ตัว/ตร.ม. ให้อาหารเป็นเวลา 90 วัน เมื่อน้ำอาหารมาวิเคราะห์โภชนะ พบว่า กลุ่มที่ 6 มีปริมาณวิตามินซีเฉลี่ยเท่ากับ 3,371.53±212.67 มก./กก. ซึ่งสูงกว่าทุกกลุ่ม (P < 0.05) หลังการทดลองปลากลุ่มที่ 4 มีน้ำหนักตัวเฉลี่ยสูงที่สุด 197.10±7.02 ก. และมีค่า ADG 0.49±0.03 ก./วัน ค่า FCR ทุกกลุ่มไม่แตกต่างกัน (P > 0.05) ในขณะที่ ค่า RBC, Hb และ HCR กลุ่มที่ 6 มีค่าเฉลี่ยสูงที่สุด 3.64±0.39x106 เซลล์/ลบ.มม., 9.81±3.74 ก./ดล. และ 47.13±7.52% ตามลำดับ นอกจากนี้กลุ่มที่ 6 มีระดับ COR และ SGlu ต่ำที่สุด 155.23±52.80 นก./มล., 112.30±17.50 มล.โมล/ล. ตามลำดับ กลุ่มที่ 4 มีค่า GSI ค่าความดกไข่ และ HR สูงที่สุด 79.09±5.83%, 273.00±12.38 ฟอง/ก. และ 79.55±1.75% ตามลำดับ อย่างไรก็ดีกลุ่มที่ 5 ค่าอัตรารอดตายหลังการขนย้ายเฉลี่ยสูงที่สุด 87.21±4.07% สูงกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ (P > 0.05) กลุ่มที่ 6 ค่า pH มีค่าระหว่าง 5.4–7.3 อุณหภูมิ มีค่าระหว่าง 29–35 องศาเซลเซียส ค่า DO มีค่าระหว่าง 3.04-6.24 มก./ล. ค่า TAN มีค่าระหว่าง 0.01-1.27 มก./ล. จากผลการศึกษาครั้งนี้ สรุปได้ว่าการใช้โพรไบโอติกชนิด Bacillus subtilisผสมอาหารระดับ 1 ก./กก. มีแนวโน้มช่วยลดปริมาณฮอร์โมนคอร์ติซอลและเพิ่มอัตราการรอดตายของแม่พันธุ์ปลาดุกอุยหลังการขนย้ายได้
Article Details
References
คุณาดล ศิลาฤดี. 2550. การศึกษาปริมาณโปรไบโอติก แบคทีเรีย Lactobacillus plantarum CR1T5 ที่เหมาะสมต่อการเจริญเติบโตของปลากดเหลือง. วิทยานิพนธ์ปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาการประมง บัณฑิตวิทยาลัย มหาวิทยาลัยขอนแก่น.
ชาญวิทย์ สุวรรณ์ และ ชนกันต์ จิตมนัส. 2560. การประยุกต์ใช้โพรไบโอติกในการเลี้ยงปลานิล. เชียงใหม่สัตวแพทยสาร. 15: 15-24.
นันทริกา ชันซื่อ และ สมหวัง พิมลบุตร. 2550. การศึกษาเบื้องต้นเกี่ยวกับค่าทางเคมีในเลือดของปลาน้ำจืดในวงศ์ปลาตะเพียนหรือปลาคาร์พ (Family Cyprinidae). Journal of the Thai Veterinary Medical Association under the Royal Patronage. 58: 22-31.
สำนักงานเศรษฐกิจการเกษตร. 2559. ปลาดุก: ผลผลิต รายจังหวัด ปี 2557-2559 (ปี 2558-2559 พยากรณ์ไตรมาส 3 เดือนกันยายน 2559). สำนักงานเศรษฐกิจการเกษตร และคณะทำงานพัฒนาคุณภาพข้อมูลด้านประมง กระทรวงเกษตรและสหกรณ์. สืบค้นจาก https://goo.gl/Tu5PeH สืบค้นเมื่อวันที่ 29 กันยายน 2560.
Aderolu A., F. Zaid, and O. Awobajo. 2017. Dietary effect of Cissus populnea and Securidaca longepedunculata aqueous leave extracts on reproductive. Aceh Journal of Animal Science. 2: 1-11.
Aly, S.M., Y.A-G. Ahmed, A.A-A. Ghareeb, and M.F. Mohamed. 2008. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia niloticus(Oreochromis niloticus) to challenge infection. Fish & Shellfish Immunology. 25: 128-136.
AOAC. 2000. Official methods of analysis (17th ed.). Washington, DC: Association of the Official Analytical Chemists.Arun S., I. Thongam, A. Chanu, I. Mura, and J. Srinivasa. 2017. Virulent Aeromonas veronii Strain BLB-01 Associated with Mass Mortality of Clarias batrachus.
Atrayee D., K. Ghosh, and H. Niladri. 2017. Improvement of Growth and Survival of the Juvenile Walking Catfish, Clarias batrachus(L.) (Siluriformes: Clariidae) Fed on Probiotics Encapsulated and Ascorbic Acid Enriched Chironomid Larvae (Diptera: Chironomidae). Proc Zool.
Boyd, C.E. 1998. Water Quality for Pond Aquaculture. Research and Development Series No. 43. International Center for Aquaculture and Aquatic Environments, Alabama Agricultural Experiment Station, Auburn University, Alabama.
Cabello, F.C. 2006. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ. Microbiol. 8: 1137–1144.
Daniel N., A. P. Muralidhar, P. P. Srivastava, K. K. Jain, K. Pani Prasad, J. Manish, and T.Sivaramkrishnan. 2018. Dietary ascorbic acid requirement for growth of striped catfish, Pangasianodon hypophthalmus(Sauvage, 1878) juveniles. Aquaculture Nutrition. 24: 616-624.
Essa, M. A., S. S. EL-Serafy, M. M. El-Ezabi, S. M. Daboor, N. A. Esmael, and S. P. Lall. 2010. Effect of different dietary probiotics on growth, feed utilization and digestive enzymes activities of Nile tilapia, Oreochromis niloticus. Journal of the Arabian Aquaculture Society. 5: 143-162.
Flávia Sampaio D. F., and A. F.Carolina. 2016. An overview of stress physiology of fish transport: Changes in water quality as a function of transport duration. Fish and Fisheries. 17: 1055-1072.
Guo, X., D. Li, W. Lu, X. Piao, and X. Chen. 2006. Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilisMA139 in pigs. A. Van. Leeuw. 90: 139–146.
Honggang Z., L. Chao, H. B. Benjamin, R. Zhang, W. Thongda, D. Allen Davis, and E. Peatman. 2015. Impact of feed additives on surface mucosal health and columnaris susceptibility in channel catfish fingerlings, Ictalurus punctatus. Fish & Shellfish Immunology. 46: 624-637.
Iwama, G. K., L. O. B. Afonso, and M. M. Vijayan. 2006. Stress in fishes. In: Evans, D. H. & Claiborne, J. B. The Physiology of fishes. 319-342. Taylor and Francis, 3rd edition. 601 p. USA.
Han, B., W. Long, J. He, Y. Liu, and Y. Si. 2015. Effects of dietary Bacillus licheniformis on growth performance, immunological parameters, intestinal morphology and resistance of juvenile Nile tilapia (Oreochromis niloticus) to challenge infections. Fish. Shellfish. Immunol. 46: 225–231.
Liu, C. H., C. H. Chiu, S. W. Wang, and W.Cheng. 2012. Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of thegrouper, Epinephelus coioides Fish. Shellfish. Immunol. 33: 699–706.
Liu, H., Z. Li, B. Tan, Y. Lao, Z. Duan, W. Sun, and X. Dong. 2014. Isolation of a putative probiotic strain S12 and its effect on growth performance, non-specific immunity and disease resistance of white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology. 41: 300-307.
Martinez-Porchas, M., L. R. Martinez-Cordova, and R. Ramos-Enriquez. 2009. Cortisol and glucose: reliable indicators of fish stress?. Pan-American H. of Aquatic Sci. 4:158-178.
Mukherjee, P. 2002. Quality control of herbal drugs. Eastern Publishers (Business Horizons Ltd.) New Delhi.
Na-Nakorn, U., S. Chantsawang, and W. Tarnchalanukit. 1994. Response to mass selection for disease resistance in walking catfish, Clarius macrocephalus. J. Appl. Aqua. 4: 65–73.
Nielsen, S.S. 2010. Vitamin C determination by indophenol method. In Food analysis laboratory manual, vol. 2, ed. Cham: Springer .55-60.
Ogbeche, K.A., Y.O. Ogunbiyi, and F.I.O. Duru. 2002. Effect of Methanol extract of Kigelia africana on Sperm Motility and Fertility in Rats. Nigerian Journal of Health and Biomedical Sciences. 1: 113-116.
Ojha, M.L., N.K. Chadha, V.P. Saini, S. Damroy, Chandraprakash, and P.B. Sawant. 2014. Effect of ethanolic extract of Mucuna pruriens on growth, metabolism and immunity of Labeo rohita (Hamilton, 1822) fingerlings. International Journal of Fauna and Biological Studies. 1: 01-09.
Polakof, S., S. Panserat, J. L. Soengas, and T. W. Moon. 2012. Glucose metabolism in fish: areview. Journal of Comparative Physiology B. 182:1015-1045.
Pottinger, T. G. 1998. Changes in blood cortisol, glucose and lactate in carp retained in anglers’ keepnets. Journal of Fish Biology 53: 728-742.
Robertson L., P. Thomas, C. R. Arnold, and J. M.Trant. 1987. Plasma cortisol and secondary stress responses of red drum to handling, transport, rearing density, and a disease outbreak. The Progressive Fish Culturist. 49: 1-12.
Rodak, B. F., G. A. Fritsma, and K. Doig. 2007. Hematology: Clinical principles and applications. 3rd edition. Saunders Elsevier. Pp. 160-174.
Rotllant, J., P. H. M. Bahm, S. E. Wendelaar-Bonga, J. Perez-Sanchez, and L. Tort. 2000. A drop in ambient temperature results in a transient reduction of interrenal ACTH responsiveness in the gilthead sea bream (Sparus aurata L.). Fish Physiol. Biochem. 23: 265-273.
Smith, P. 2008. Antimicrobial resistance in aquaculture. Rev. Sci.Technol. 27: 243–264.
Tongpim, S., R. Meidong, P. Poudel, S. Yoshino, and Y. Okugawa. 2014. Isolation of thermophilic L-lactic acid producing bacteria showing homo-fermentative manner under high aeration condition. J. Biosci. Bioeng. 117: 318–324.