บทบาทของถ่านชีวภาพต่อการกักเก็บคาร์บอนในดินและการลดการปลดปล่อยก๊าซเรือนกระจกในพื้นที่เกษตรกรรม
Main Article Content
บทคัดย่อ
ถ่านชีวภาพได้รับความสนใจในการประยุกต์ใช้เป็นวัสดุปรับปรุงดิน เนื่องจากเป็นวัสดุที่มีความพรุนสูงสามารถดูดซับน้ำ และธาตุอาหารได้ดี ถ่านชีวภาพผลิตจากมวลชีวภาพด้วยกระบวนการไพโรไลซิส หรือการเผาภายใต้สภาวะจำกัดออกซิเจน ซึ่งช่วยลดการสูญเสียคาร์บอนในสถานะก๊าซ ทำให้ถ่านชีวภาพมีคาร์บอนเป็นองค์ประกอบสูง และมีความต้านทานต่อการย่อยสลายจากกิจกรรมของจุลินทรีย์ในดิน ด้วยเหตุนี้ ถ่านชีวภาพจึงจัดว่าเป็นวัสดุที่ช่วยกักเก็บคาร์บอน และลดการปลดปล่อยก๊าซเรือนกระจกสู่ชั้นบรรยากาศได้ อย่างไรก็ตาม ถ่านชีวภาพไม่ได้จัดว่าเป็นการกักเก็บคาร์บอนจากชั้นบรรยากาศโดยตรง แต่นำไปสู่การเปลี่ยนแปลงของคาร์บอนที่
กักเก็บไว้ในมวลชีวภาพให้อยู่ในรูปแบบที่เสถียรมากยิ่งขึ้น ซึ่งช่วยในการกักเก็บคาร์บอนในดิน นอกจากนั้น ถ่านชีวภาพช่วยลด
การปลดปล่อยก๊าซไนตรัสออกไซด์ และมีเทนซึ่งเป็นก๊าซเรือนกระจกที่สำคัญ การลดการปลดปล่อยก๊าซเหล่านี้ลงเพียงเล็กน้อยก่อให้เกิดประโยชน์อย่างมากต่อสิ่งแวดล้อม เนื่องจากศักยภาพในการทำให้เกิดภาวะโลกร้อนของก๊าซไนตรัสออกไซด์ และก๊าซมีเทนสูงกว่า
ก๊าซคาร์บอนไดออกไซด์ประมาณ 310 และ 25 เท่า ตามลำดับ ด้วยเหตุนี้ ถ่านชีวภาพจึงจัดเป็นตัวเลือกที่เหมาะสมสำหรับการบรรเทาการเปลี่ยนแปลงสภาพภูมิอากาศผ่านการกักเก็บคาร์บอนในระยะยาว และการลดการปลดปล่อยก๊าซเรือนกระจกที่เป็นปัญหาสำคัญของภาวะโลกร้อน
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กรมพัฒนาที่ดิน. 2558. สถานภาพทรัพยากรดินและที่ดินของประเทศไทย. กระทรวงเกษตรและสหกรณ์, กรุงเทพฯ.
บรรเจิดลักษณ์ จินตฤทธิ์, สุนันทา เศรษฐ์บุญสร้าง, พันธุศักดิ์ โกเมศ, กำชัย กาญจนธนเศรษฐ และนันทภพ ชลเขต. 2562. ผลของการใช้ถ่านชีวภาพที่มีต่อคุณภาพดินและลดก๊าซเรือนกระจกเพื่อปลูกผักอินทรีย์. กรมพัฒนาที่ดิน, กระทรวงเกษตรและสหกรณ์, กรุงเทพฯ.
ฤทัยรัตน์ โพธิ. 2552. ก๊าซเรือนกระจกกับการเปลี่ยนแปลงสภาพอากาศ: ก๊าซมีเทนในนาข้าว. วารสารวิชาการ วิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครสวรรค์. 1(1): 83-92.
ศิริลักษณ์ ศิริสิงห์ และอรสา สุกสว่าง. 2556. การประยุกต์ใช้ถ่านชีวภาพในการปรับปรุงดินเพื่อการเกษตร. วารสารสังคมศาสตร์และมนุษยศาสตร์. 39(2): 212-225.
สำนักงานนโยบายและแผนทรัพยากรธรรมชาติและสิ่งแวดล้อม. 2553. รายงานฉบับสมบูรณ์การจัดทำบัญชีก๊าซเรือนกระจกของประเทศไทย. กรุงเทพฯ.
สำนักงานเศรษฐกิจการเกษตร. 2554. ข้อมูลพื้นฐานเศรษฐกิจการเกษตร ปี 2554. แหล่งข้อมูล: http://www.oae.go.th/download/download_ journal/fundamation-2554.pdf. ค้นเมื่อ 22 กันยายน 2555.
อัญชัน พิมพ์สวรรค์, ยุวดี อินสำราญ, และญาณวุฒิ อุทรักษ์. 2562. โครงสร้างไม้ต้น ความหลากชนิด และการกักเก็บคาร์บอนในมวลชีวภาพของป่าชุมชนบ้านหินลาด และบ้านหินลาดเก่าน้อย ตำบลแวงน่าง อำเภอเมือง จังหวัดมหาสารคาม. วารสารเกษตรพระจอมเกล้า. 37(1): 88-96.
Abdelhafez, A.A., M.H. Abbas, and J. Li. 2017. Biochar: the black diamond for soil sustainability contamination control and agricultural production. Engineering Applications of Biochar. 2: 7-27.
Al-Wabel, M.I., A. Al-Omran, A.H. El-Naggar, M. Nadeem, and A.R. Usman. 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology. 131: 374-379.
Angin, D. 2013. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology. 128: 593-597.
Asadullah, M., M.A. Rahman, M.M. Ali, M.S. Rahman, M.A. Motin, M.B. Sultan, and M.R. Alam. 2007. Production of bio-oil from fixed bed pyrolysis of bagasse. The Science and Technology of Fuel and Energy. 86: 2514-2520.
Blanco-Canqui, H. 2017. Biochar and soil physical properties. Soil Science Society of America Journal. 81: 687-711.
Borchard, N., M. Schirrmann, M.L. Cayuela, C. Kammann, N. Wrage-Monnig, J.M. Estavillo, and J. Novak. 2019. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Science of the Total Environment. 65: 2354–2364.
Brady, N.C., and R.R. Weil. 2008. An Introduction to the Nature and Properties of Soils. 14th edition, Prentice Hall, Upper Saddle River, NJ.
Brennan, J.K., T.J. Bandosz, K.T. Thomson, and K.E. Gubbins. 2001. Water in porous carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 187: 539-568.
Brown, R. 2009. Biochar for environmental management science and technology. Routledge, London.
Budai, A., L. Wang, M. Gronli, L.T Strand, M.J. Antal Jr, S. Abiven, and D.P. Rasse. 2014. Surface properties and chemical composition of corncob and miscanthus biochars effects of production temperature and method. Journal of Agricultural and Food Chemistry. 62: 3791-3799.
Butnan, S., J.L. Deenik, B. Toomsan, M.J. Antal, and P. Vityakon. 2016. Biochar properties influencing greenhouse gas emissions in tropical soils differing in texture and mineralogy. Journal of environmental quality. 45: 1509–1519.
Cao, X., L. Zhong, X. Peng, S. Sun, S. Li, S. Liu, and R. Sun. 2014. Comparative study of the pyrolysis of lignocellulose and its major components: Characterization and overall distribution of their biochars and volatiles. Bioresource Technology. 155: 21-27.
Cárdenas-Aguiar, E., G. Gascó, J. Paz-Ferreiro, and A. Méndez. 2017. The effect of biochar and compost from urban organic waste on plant biomass and properties of an artificially copper polluted soil. International Biodeterioration and Biodegradation. 124: 223-232.
Cayuela, M.L., L. Van Zwieten, B.P. Singh, S. Jeffery, A. Roig, and M.A. Sánchez-Monedero. 2014. Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture Ecosystems and Environment. 191: 5-16.
Cayuela, M.L., S. Jeffery, and L. van Zwieten. 2015. The Molar H:Corg ratio of biochar is a key factor in mitigating N2O emissions from soil. Agriculture, Ecosystems & Environment. 202: 135–138.
Chang, J., D.E. Lay, S.A. Clay, R. Chintala, J.M. Miller, and T. Schumacher. 2016. Biochar reduced nitrous oxide and carbon dioxide emissions from soil with different water and temperature cycles. Agronomy Journal. 108: 2214.
Chintala, R., D.E. Clay, T.E. Schumacher, D.D. Malo, and J.L. Julson. 2013. Optimization of oxygen parameters for determination of Carbon and Nitrogen in biochar materials. Analytical Letters. 46: 532-538.
Collard, F.X., and J. Blin. 2014. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose hemicelluloses and lignin. Renewable and Sustainable Energy Reviews. 38: 594-608.
Cornelissen, G., D.W. Rutherford, H.P.H. Arp, P. Dörsch, C.N. Kelly, and C.E. Rostad. 2013. Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions. Environmental Science and Technology. 47: 7704-7712.
Dai, Z., A. Enders, J.L. Rodrigues, K.L. Hanley, P.C. Brookes, J. Xu, and J. Lehmann. 2018. Soil fungal taxonomic and functional community composition as affected by biochar properties. Soil Biology and Biochemistry. 126: 159-167.
Darmstadt, H., D. Pantea, L. Sümmchen, U. Roland, S. Kaliaguine, and C. Roy. 2000. Surface and bulk chemistry of charcoal obtained by vacuum pyrolysis of bark: influence of feedstock moisture content. Journal of Analytical and Applied Pyrolysis. 53: 1-17.
Dhyani, S.K., A. Ram, and I. Dev. 2016. Potential of agroforestry systems in carbon sequestration in India. Indian Journal of Agricultural Sciences. 86: 1103-1112.
Ding, W., X. Dong, I.M. Ime, B. Gao, and L.Q. Ma. 2014. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere. 105: 68-74.
Downie, A., A. Crosky, and P. Munroe. 2009. Physical properties of biochar. Biochar for environmental Management, Science and technology. Journal of Soil Science. 1: 13-32.
Edwards, J.D., C.M. Pittelkow, A.D. Kent, and W.H. Yang. 2018. Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season. Soil Biology and Biochemistry. 122: 81-90.
El-Gamal, E.H., M. Saleh, I. Elsokkary, M. Rashad, and M.M.A. El-Latif. 2017. Comparison between properties of biochar produced by traditional and controlled pyrolysis. Alexandria Science Exchange Journal. 38: 412-425.
Enders, A., K. Hanley, T. Whitman, S. Joseph, and J. Lehmann. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology. 114: 644-653.
Fan C, H. Chen, B. Li, and Z. Xiong. 2017 Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China. Biogeosciences. 14: 2851–2863.
FAO. 2020. Emissions due to agriculture. Global, regional and country trends 2000–2018. FAOSTAT Analytical Brief Series No 18. Rome.
Feng, Y., Y. Xu, Y. Yu, Z. Xie, and X. Lin. 2012. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biology and Biochemistry. 46: 80-88.
Fidel, R.B., D.A. Laird, and T.B. Parkin. 2017. Impact of biochar organic and inorganic carbon on soil CO2 and N2O emissions. Journal of Environmental Quality. 46: 505-513.
Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland. 2007. Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA.
Glaser, B., J. Lehmann, and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal a review. Biology and Fertility of Soils. 35: 219-230.
Grutzmacher, P., A.P. Puga, M.P.S. Bibar, A.R. Coscione, A.P. Packer, and C.A. de Andrade. 2018. Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar. Science of the Total Environment. 625: 1459-1466.
Gundale, M.J., and T.H. DeLuca. 2006. Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. Forest Ecology and Management. 231: 86-93.
Gupta, A.K., I.S. Solanki, B.M. Bashyal, Y. Singh, and K. Srivastava. 2015. Bakanae of rice-an emerging disease in Asia. The Journal of Animal and Plant Sciences. 25: 1499-1514.
Gupta, D.K., A. Bhatia, A. Kumar, T.K. Das, N. Jain, R. Tomer, and H. Pathak. 2016. Mitigation of greenhouse gas emission from rice–wheat system of the Indo-Gangetic plains: Through tillage irrigation and fertilizer management. Agriculture Ecosystems and Environment. 230: 1-9.
Gupta, D.K., C.K. Gupta, R. Dubey, R.K. Fagodiya, G. Sharma, A. Keerthika, and A.K. Shukla. 2020. Role of biochar in carbon sequestration and greenhouse gas mitigation. p.141-165. In: Singh J., C. Singh. (eds) Biochar Applications in Agriculture and Environment Management. Springer, Cham.
Han, X., X. Sun, C. Wang, M. Wu, D. Dong, T. Zhong, and W. Wu. 2016. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Scientific Reports. 6: 1-10.
Harsono, S.S., P. Grundman, L.H. Lau, A. Hansen, M.A.M. Salleh, A. Meyer-Aurich, A. Idris, and T.I.M. Ghazi. 2013. Energy balances greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches. Resources Conservation and Recycling. 77: 108-115.
Harter, J., H.M. Krause, S. Schuettler, R. Ruser, M. Fromme, T. Scholten, and S. Behrens. 2014. Linking N2O emissions from biochar-amended soil to the structure and function of the N cycling microbial community. Multidisciplinary Journal of Microbial Ecology. 8: 660-674.
Hilber, I., P. Mayer, V. Gouliarmou, S.E. Hale, G. Cornelissen, H.P. Schmidt, and T.D. Bucheli. 2017. Bioavailability and bio accessibility of polycyclic aromatic hydrocarbons from (post-pyrolytically treated) biochars. Chemosphere. 174: 700-707.
IPCC. 1996. Guidelines for National Greenhouse Gas Inventories. Synthesis Report. Available: https://www.ipcc.ch/ Accessed Nov. 6, 2021.
IPCC. 2001. Climate Change 2001: Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Watson, R.T. and the Core Writing Team (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA.
IPCC. 2006. Guidelines for National Greenhouse Gas Inventories., Intergovernmental Panel on Climate Change Institute for Global Environmental Strategies IGES, 2108 - 11, Hayama, Kanagawa (Japan).
IPCC. 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.
Jeffery, S., F.G. Verheijen, C. Kammann, and D. Abalos. 2016. Biochar effects on methane emissions from soils: a meta-analysis. Soil Biology and Biochemistry. 101: 251–258.
Jeffery, S., F.G. Verheijen, M. van der Velde, and A.C. Bastos. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture Ecosystems and Environment. 144: 175-187.
Junpen, A., J. Pansuk, O. Kamnoet, P. Cheewaphongphan, and S. Garivait. 2018. Emission of air pollutants from rice residue open burning in Thailand. Atmosphere. 9(11): 449.
Kajina, W., P. Rousset, W.H. Chen, T. Sornpitak, and J.M. Commandré. 2018. Coupled effect of torrefaction and blending on chemical and energy properties for combustion of major open burned agriculture residues in Thailand. Renewable Energy. 118: 113-121.
Kumar, S., R.E. Masto, L.C. Ram, P. Sarkar, J. George, and V.A. Selvi. 2013. Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecological Engineering. 55: 67-72.
Laine, J., S. Simoni, and R. Calles. 1991. Preparation of activated carbon from coconut shell in a small scale cocurrent flow rotary kiln. Chemical Engineering Communications. 99: 15-23.
Lal, R., R.F. Follett, B.A. Stewart, and J.M. Kimble. 2007. Soil carbon sequestration to mitigate climate change and advance food security. Soil science. 172: 943-956.
Lee, J., J.H. Jeon, J. Shin, H.M. Jang, S. Kim, M.S. Song, and Y.M. Kim. 2017. Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plants. Science of the Total Environment. 605: 906- 914.
Lehmann, J., and S. Joseph. 2009. Biochar for Environmental Management Science and Technology. Earthscan, London.
Lehmann, J., J. Gaunt, and M. Rondon. 2006. Biochar sequestration in terrestrial ecosystems a review. Mitigation and Adaptation Strategies for Global Change. 11: 403-427.
Lehmann, J., M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday, and D. Crowley. 2011. Biochar effects on soil biota a review. Soil Biology and Biochemistry. 43: 1812-1836.
Leng, L., and H. Huang. 2018. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource Technology. 270: 627-642.
Liang, C., Z. Li, and S. Dai. 2008. Mesoporous carbon materials: synthesis and modification. Angewandte Chemie International Edition. 47: 3696-3717.
Liu, T., Y, M. Yang, Y. Wu, H. Wang, Y. Chen, and W. Wu. 2011. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. Journal Soils Sediments. 11: 930–939.
Major, J., M. Rondon, D. Molina, S.J. Riha, and J. Lehmann. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil. 333: 117-128.
Malyan, S.K., A. Bhatia, S.S. Kumar, R.K. Fagodiya, A. Pugazhendhi, and P.A. Duc. 2019. Mitigation of greenhouse gas intensity by supplementing with Azolla and moderating the dose of nitrogen fertilizer. Biocatalysis and Agricultural Biotechnology. 20: 101266.
Masulili, A., W.H. Utomo, and M.S. Syechfani. 2010. Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. Journal of Agricultural Science. 2: 39.
Mia, S., F.A. Dijkstra, and B. Singh. 2017. Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium. Environmental Science and Technology. 51: 8359-8367.
Minasny, B., B.P. Malone, A.B. McBratney, D.A. Angers, D. Arrouays, A. Chambers, and L. Winowiecki. 2017. Soil carbon 4 per mille. Geoderma. 292: 59-86.
Mukherjee, R. Lal, and A.R. Zimmerman. 2014. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of the Total Environment. 487: 26-36.
Munera-Echeverri, J.L., V. Martinsen, L.T Strand, V. Zivanovic, G. Cornelissen, and J. Mulder. 2018. Cation exchange capacity of biochar: An urgent method modification. Science of the Total Environment. 642: 190-197.
Nan, Q., C. Wang, H. Wang, Q. Yi, and W. Wu. 2020. Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field. Science of the Total Environment. 746: 141351.
Nelissen, V., G. Ruysschaert, D. Manka’Abusi, T. D’Hose, K. De Beuf, B. Al-Barri, and P. Boeckx. 2015. Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. European Journal of Agronomy. 62: 65-78.
Nguyen, B.T., J. Lehmann, W.C. Hockaday, S. Joseph, and C.A. Masiello. 2010. Temperature sensitivity of black carbon decomposition and oxidation. Environmental Science and Technology. 44: 3324-3331.
Novak, J.M., W.J. Busscher, D. L. Laird, M. Ahmedna, D.W. Watts, and M.A. Niandou. 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science. 174: 105-112.
Nsamba, H.K., S.E. Hale, G. Cornelissen, and R.T. Bachmann. 2015. Sustainable technologies for small-scale biochar production—a review. Journal of Sustainable Bioenergy Systems. 5: 10.
ONEP. 2009. National strategy on Climate Change Management (A.D. 2008-2012). Ministry of Natural Resources and Environment, Bangkok.
Pietikäinen, J., O. Kiikkilä, and H. Fritze. 2000. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos journal. 89: 231-242.
Pratiwi, E.P.A., and Y. Shinogi. 2016. Rice husk biochar application to paddy soil and its effects on soil physical properties plant growth and methane emission. Paddy and Water Environment. 14: 521-532.
Qin, X.B., Y.E. Li, H. Wang, C. Liu, J.L. Li, Y.F. Wan, Q.Z. Gao, F.L. Fan, and Y.L. Liao. 2016. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China. Science of the Total Environment Sciences. 569–570: 1390–1401.
Rafiq, M.K., R.T. Bachmann, M.T. Rafiq, Z. Shang, S. Joseph, and R. Long. 2016. Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PLOS One. 11: e0156894.
Rawat, J., Saxena, J. and P. Sanwal, P. 2019. Biochar: a sustainable approach for improving plant growth and soil properties. pp. 1-17. In Biochar-an imperative amendment for soil and the environment. London: IntechOpen.
Rondon, M.A., D. Molina, M. Hurtado, J. Ramirez, J. Lehmann, J. Major, and E. Amezquita. 2006. Enhancing the productivity of crops and grasses while reducing greenhouse gas emissions through bio-char amendments to unfertile tropical soils, pp. 9-15. In 18th World Congress of Soil Science. Philadelphia, PA: International Union of Soil Sciences.
Rondon, M.A., J.A. Ramirez, and J. Lehmann. 2005. Greenhouse gas emissions decrease with charcoal additions to tropical soils. In: Proceedings of the 3rd USDA symposium on greenhouse gases and carbon sequestration, vol 208, Baltimore, USA.
Sørensen, C.G., N. Halberg, F.W. Oudshoorn, B.M. Petersen, and R. Dalgaard. 2014. Energy inputs and GHG emissions of tillage systems. Biosystems Engineering. 120: 2-14.
Steiner, C., W.G. Teixxeira, J. Lehmann, T. Nehls, J.L.V.de Macedo, and W.E.H. Blum. 2007. Long term effects of manure charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant and Soil. 292: 275-290.
Thies, J.E., and M. C Rillig. 2009. Characteristics of biochar: biological properties. Biochar for environmental management: Science and Technology. 1: 85-105.
Tomczyk, A., Z. Sokołowska, and P. Boguta. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology. 19: 191-215.
Tubiello, F.N., M. Salvatore, S. Rossi, A. Ferrara, N. Fitton, and P. Smith. 2013. The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters. 8: 015009.
Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry. 19: 703-707.
Verheijen, F., S. Jeffery, A.C. Bastos, M. Van der Velde, and I. Diafas. 2010. Biochar Application to Soils. A critical scientific review of effects on soil properties processes and functions. JRC Scientific and Technical Reports. 24099: 162.
Wang, J., Z. Xiong, and Y. Kuzyakov. 2016. Biochar stability in soil: meta‐analysis of decomposition and priming effects. Bioproducts for a Sustainable Bioeconomy. 8: 512-523.
Watson, R.T., L.G., Meira Filho, E. Sanhueza, and A. Janetos. 1992. Greenhouse gases: sources and sinks. Climate Change. 92: 25-46.
Windeatt, J.H., A.B. Ross, P.T. Williams, P.M. Forster, M.A. Nahil, and S. Singh. 2014. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. Journal of Environmental Management. 146: 189-197.
Xiao, K.Q., F. Beulig, H. Røy, B.B. Jørgensen, and N. Risgaard-Petersen. 2018. Methylotrophic methanogenesis fuels cryptic methane cycling in marine surface sediment. Limnology and Oceanography. 63: 1519-1527.
Xu, X., C. Chen, and Z.Q. Xiong. 2016. Effects of biochar and nitrogen fertilizer amendment on abundance and potential activity of methanotrophs and methanogens in paddy field. Acta Pedological Sinica. 53: 1517–1527.
Yanai, Y., K. Toyota, and M. Okazaki. 2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition. 53: 181-188.
Yang, H., R. Yan, H. Chen, D.H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose cellulose and lignin pyrolysis. The Science and Technology of Fuel and Energy. 86: 1781-1788.
Yang, X., Y. Lan, J. Meng, W. Chen, Y. Huang, X. Cheng, T. He, T. Cao, Z. Liu, L. Jiang, and J. Gao. 2017. Effects of maize stover and its derived biochar on greenhouse gases emissions and C-budget of brown earth in Northeast China. Environmental Science and Pollution Research. 24: 8200-8209.
Yuan, J.H., and R.K. Xu. 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil use and Management. 27: 110-115.
Zhang, X, C. Chen, X. Chen, P. Tao, Z. Jin, and Z. Han. 2018. Persistent effects of biochar on soil organic carbon mineralization and resistant carbon pool in upland red soil. Science China Earth Sciences. 77: 177.
Zhang, X.L., Y.T. Zhang, R. Liu, J. Xie, J.W. Zhang, W.J. Xu, and X.J. Shi. 2021. Effects of green manure return regimes on soil greenhouse gas emissions. Acta Prataculturae Sinica. 30: 25.
Zhou, Y., B. Gao, A.R. Zimmerman, H. Chen, M. Zhang, and X. Cao. 2014. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource Technology. 152: 538-542.