Effect of cold storage temperature on house fly pupa for mass rearing and parasitization of housefly parasitoid (Spalangia gemina Boucek)
Main Article Content
Abstract
Storage of house fly pupae for delay the development is necessary for mass rearing house fly and house fly parasitoid, Spalangia gemina. In order to delay house fly pupae hatched for mass rearing in the laboratory, the effect of cold storage at 8 12, and 16°C on the developmental rates and survival of 2 and 4 days old house fly pupae were investigated for 1-4 weeks. Biological data of house fly rearing at 25°C was compared. Results showed that the adult emergence, and adult longevity, decrease as cold storage duration increased. Four days old of housefly pupae which storage for 1 week could successively delayed their biology for all 3 temperatures. Survival rate of 4 days old pupae was higher than 2 days old. Survival rate when storage at 12°C was not significant difference when compared with pupa storage at 25°C for 4 days old pupa to testing the delay of house fly pupae development for house fly parasitoid, 1 day old house fly pupae were examined when storage at 0 and 12°C. The results showed that parasitization rate of house fly parasitoid was higher in pupae stored at 12°C than 0°C. The parasitization rate of and male to female ratio in the 2nd generation of S. gemina when parasitized house fly pupa storage at 12°C were close to the house fly pupa stored at 25°C. Parasitization rate decrease as cold storage duration increased. Therefore, low temperature at 12°C for 1 weeks is an alternative method for delaying house fly development and rearing management house fly and its parasitoid.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
จักรวาล ชมภูศรี. 2553. ชีววิทยาและการควบคุมแมลงที่เป็นปัญหาสาธารณสุข.บริษัท หนังสือดีวัน จำกัด, กรุงเทพมหานคร.
สถาบันวิจัยวิทยาศาสตร์สาธารณสุข. 2553. ชีววิทยาและการควบคุมแมลงที่เป็นปัญหาสาธารณสุข.บริษัทหนังสือดีวันจำกัด, กรุงเทพมหานคร.
สิริภา แก้วคำแสน. 2556. การศึกษาชีววิทยาและประสิทธิภาพของแตนเบียน Spalangia gimina (Boucek) และ Pachycrepoideus vindermiae (Rondani) (Hymenoptara: Pteromalidae) ต่อดักแด้แมลงวันบ้าน (Musca domestica Linnaeus). วิทยานิพนธ์ปริญญาวิทยาศาสตร์มหาบัณฑิต มหาวิทยาลัยขอนแก่น, ขอนแก่น.
อุบล ตังควานิช. 2555. แตนเบียนดักแด้แมลงวันบ้าน ประสิทธิภาพและการนำไปใช้ควบคุมโดยชีววิธีในฟาร์มปศุสัตว์. แก่นเกษตร. 40: 379-386.
Analytical software. 2013. Statistix10 analytical software for researchers. Analytical software. Tallahassee, FL.
Apiwathnasorn, C. 2012. Literature review of Parasitoid of filth flies in Thailand: A list of species with brief notes on bionomic of common species. Southeast Asian Journal of Tropical Medicine and Public Health. 43(1): 48-54.
Barnard, D. R., and C.J. Geden. 1993.Influence of larval density and temperature in poultry manure on development of the house fly (Diptera: Muscidae). Environmental Entomology. 22: 971-977.
Chen, S., S. J. Fleischer, M. C. Saunders, and M. B. Thomas. 2015. The influence of diurnal temperature variation on degree-day accumulation and Insect life history. Plos One. 10(3): e0120772.
Chiel, E., and W. Kuslitzky. 2016. Diversity and abundance of house fly pupal parasitoids in Israel, with first records of two Spalangia species. Environmental Entomology. 45(2): 283-91.
Floate, K. D. 2002. Production of filth fly parasitoids (Hymenoptera: Pteromalidae) on fresh and on freeze-killed and stored house fly pupae. Biocontrol Science and Technology. 12(5): 595–603.
Geden, C. J., and P. E. Kaufman. 2007. Development of Spalangia cameroni and Muscidifurax raptor (Hymenoptera: Pteromalidae) on live house fly (Diptera: Muscidae) pupae and pupae killed by heat shock, irradiation, and cold. Environmental Entomology. 36(1): 34–39.
Hallman, G. J., and D. L. Denlinger. 2019. Temperature sensitivity in insects and application in integrated pest management. CRC Press. New York.
Kaufman, P. E., and C. J. Geden. 2009. Development of Spalangia cameroni and Muscidifurax raptor (Hymenoptera: Pteromalidae) on live and freeze-killed house fly (Diptera: Muscidae) pupae. Florida Entomologist. 92(3): 492–496.
Legner, E. F., and D. Gerling. 1967. Host-feeding and oviposition on Musca domestica by Spalangia cameroni, Nasonia vitripennis, and Muscidifurax raptor (Hymenoptera: Pteromalidae) influences their longevity and fecundity. Entomological Society of America. 60(3): 678-91.
Leopold, R. A., R. R. Rojas, and P. W. Atkinson. 1998.Post pupariation cold storage of 3 species of flies: increasing chilling tolerance by acclimation and recurrent recovery periods. Cryobiology. 36: 213-224.
Mellanby, K. 1939. Low temperature and insect activity. The Royal Society Publishing. 127(849): 473-487.
Morgan, P. B. 1981. The potential use of parasites to control Musca domestica L. and other filth breeding flies at agricultural installations in the southern United States. Science and Education Administration. 11: 25.
Nevan L. G. 2000. Physiological responses of insects to heat. Postharvest Biology and Technology. 21: 103–111.
Ogawa, K., K. Ito, T. Fukuda, S. I. Tebayashi, and R. Arakawa. 2012. Host suitability of house fly, Musca domestica (Diptera: Muscidae), pupae killed by high or low temperature treatment for a parasitoid, Spalangia endius (Hymenoptera: Pteromalidae). Scientific World Journal. 1: 214907.
Roth, J. P., G. T. Fincher, and J. W. Summerlin. 1991. Suitability of irradiated or freeze-killed horn by (Diptera: Muscidae) pupae as hosts for hymenopterous parasitoids. Economic Entomology. 84: 94-98.
Rueda, L. M., and R. C. Axtell. 1987. Reproduction of Pteromalidae (Hymenoptera) parasitic on fresh and frozen house fly (Musca domestica Linn.) pupae. Philippine Journal of Science. 116: 313-326.
Shahzad, A. N., B. Aslam, G. L. Abdul, W. S. Abdul, H. N. Riaz, and A. C. Waqar. 2016. Effect of lowest temperatures on storage of pupal parasitoid, Dirhinus giffardii. Science international. 28(5): 4756-4762.
Sanchez-Arroyo, H., and J. L. Capinera. 2017.common name: house fly. Available: https://entnemdept.ufl.edu/creatures/urban/flies/house_fly.htm. Accessed Jul. 10, 2021.
Stejskal, V., O. T. Vendl, Z. Li, and R. Aulicky. 2019. Minimal thermal requirements for development and activity of stored product and food industry pests (Acari, Coleoptera, Lepidoptera, Psocoptera, Diptera and Blattodea): A Review. Insect. 10(5): 149.
Ssepuuya, G., D. Nakimbugwe, A. D. Winne, R. Smets, J. Claes, and M. V. D. Borght. 2020. Effect of heat processing on the nutrient composition, colour, and volatile odour compounds of the long-horned grasshopper Ruspolia differens servile. National Library of Medicine. 129: 108831.
Skovgard, H., and G. Nachman. 2004.Biological control of house flies Musca domestica and stable flies Stomoxys calcitrans (Diptera: Muscidae) by means of inundative releases of Spalangia cameroni (Hymenoptera: Pteromalidae). Environmental Entomology. 94(6): 555-67.
Wang, Y., L. Yang, Y. Zhang, L. Tao, and J. Wang. 2018. Development of Musca domestica at constant temperatures and the first case report of its application for estimating the minimum postmortem interval. Forensic Science International. 285: 172-18.