สัดส่วนของโปรตีนต่อพลังงานที่เหมาะสมในอาหารปลาช่อน
Main Article Content
บทคัดย่อ
การศึกษาสัดส่วนของโปรตีนต่อพลังงานที่เหมาะสมในอาหารปลาช่อนวัยอ่อนที่มีน้ำหนักเริ่มต้นเฉลี่ยต่อตัว 3.2±0.02 กรัม ทำการแบ่งชุดอาหารทดลองออกเป็น 5 ชุดการทดลอง คือ ชุดควบคุมมีระดับโปรตีนร้อยละ 42.05 มีระดับสัดส่วนของโปรตีนต่อพลังงานที่ 93 มิลลิกรัมโปรตีน/กิโลแคลอรี และชุดสูตรทดลอง (LP5), (LP10), (LP15) และ (LP20) มีระดับโปรตีนร้อยละ 39.95 , 37.85 , 35.74 และ 33.64 และมีระดับสัดส่วนของโปรตีนต่อพลังงานที่ 89, 84, 80 และ 76 มิลลิกรัมโปรตีน/กิโลแคลอรี ตามลำดับ เมื่อสิ้นสุดการทดลองที่ 8 สัปดาห์ พบว่า ปลาช่อนที่ได้รับอาหารชุดทดลอง LP 20 และ LP 15 มีน้ำหนักเพิ่มขึ้นเฉลี่ย น้ำหนักที่เพิ่มขึ้นต่อวัน และอัตราการเจริญเติบโตจำเพาะต่ำกว่าชุดการทดลองอื่นอย่างมีนัยสำคัญทางสถิติ (P<0.05) โดยชุดควบคุมให้ค่าสูงสุดเมื่อเทียบกับชุดทดลอง แต่ไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติกับชุดทดลอง LP5 และ LP10 (P>0.05) สำหรับอัตรารอด อัตราแลกเนื้อ และประสิทธิภาพการใช้โปรตีนไม่พบความแตกต่างอย่างมีนัยสำคัญทางสถิติระหว่างชุดควบคุมและชุดทดลองต่าง ๆ (P>0.05)) ดังนั้นจากผลการทดลองในครั้งนี้ชี้ให้เห็นได้ว่าสัดส่วนของโปรตีนต่อพลังงานที่ระดับ 84 มิลลิกรัมโปรตีน/กิโลแคลอรี (LP10) ที่มีการลดระดับโปรตีนที่ร้อยละไม่เกิน 10 เป็นระดับที่เหมาะสม เพื่อใช้ในการลดปริมาณโปรตีนด้วยคาร์โบไฮเดรตในอาหารช่อน ซึ่งไม่มีผลกระทบต่อการเจริญเติบโต, อัตรารอดตาย, อัตราแลกเนื้อ และประสิทธิภาพการใช้โปรตีนของปลาช่อน เมื่อเทียบกับชุดควบคุมอีกทั้งยังสามารถลดต้นทุนการผลิตอาหารปลาช่อนได้ร้อยละ 3.23
Article Details
References
Ahmadi, M. R., and M. Alizadeh. 2004. Effects of dietary protein and energy levels on rainbow trout (Oncorhynchus mykiss) reared in brackish water. Iran J. Fish. Sci. 4: 77-88.
Ai, Q. H., K. S. Mai, H. T. Li, C. X. Zhang, L. Zhang, Q. Y. Duan, B. P. Tan, W. Xu, H. M. Ma, W. B. Zhang, and Z. G. Liufu. 2004. Effects of dietary protein to energy ratios on growth and body composition of juvenile Japanese sea bass, Lateolabrax japonicus. Aquaculture 230: 507-516.
Analia, V. F. G., C. D. Ana, M. V. Susana, and L. F. Jorge. 2009. In vivo and in vitro Protein Digestibility of Formulated Feeds for Artemesia longinaris (Crutacea, Penaeidae). Brazil Arch. Biol. Technol. 52: 1379-1386.
Areekijseree, M., A. Engkagul, U. Kovitvadhi, A. Thongpan, M. Mingmuang, P. Pakkong, and K. Rungruangsak-Torrissen. 2004. Temperature and pH characteristics of amylase and proteinase of adult freshwater pearl mussel, Hyriopsis (Hyriopsis) bialatus Simpson 1900. Aquaculture 234: 575-587.
Bergheim, I., S. Weber, M. Vos, S. Krämer, V. Volynets, S. Kaserouni, C. J. McClain, and S. C. Bischoff. 2008. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: Role of endotoxin. J. Hepatol. 48: 983-992.
Borba, M. R., D. M. Fracalossi, and L. E. Pezzato. 2006. Dietary energy requirement of piracanjuba fingerlings, Brycon orbignyanus, and relative utilization of dietary carbohydrate and lipid. Aqua. Nutr. 12: 183-191.
Bou, M., M. Todorcevic, R. Fontanillas, E. Capilla, J. Gutiérrez, and I. Navarro. 2014. Adipose tissue and liver metabolic responses to different levels of dietary carbohydrates in Gilthead Sea bream (Sparus aurata). Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 175: 72-81.
Brauge, C., F. Medale, and G. Corraze. 1994. Effect of dietary carbohydrate levels on growth, body composition and glycaemia in rainbow trout, Oncorhychus mykiss, reared in seawater. Aquaculture 1233: 109-120.
Chou, B. S. and S. Y. Shiau. 1996. Optimal dietary lipid level for growth of juvenile hybrid tilapia, Oreochromis niloticus × Oreochromis aureus. Aquaculture 143: 185-195.
Clow, K. A., K. J. Rodnick, T. J. MacCormack, and W. R. Driedzic. 2004. The regulation and importance of glucose uptake in the isolated Atlantic cod heart: ratelimiting steps and effects of hypoxia. J. Exp. Biol. 207: 1865-1874.
De Silva, S. S. and T. A. Anderson. 1995. Fish Nutrition in Aquaculture. Chapman & Hall. London.
Dias, J., M. J. Alvarez, A. Diez, J. Arzel, G. Corraze, J. M. Bautista, and S. J. Kaushik. 1998. Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European sea bass (Dicentrarchus labrax). Aquaculture 161: 169-186.
Duvnjak, M., I. Lerotic, N. Baršic, V. Tomašic, L. V. Jukic, and V. Velagic. 2007. Pathogenesis and management issues for non-alcoholic fatty liver disease. World J. Gastroentero. 13: 4539-4550.
El-Dakar, A. Y. 1994. Studies on aquatic animal: Shrimp nutrition. Ph.D. Thesis. Alexandria University, Alexandria, Egypt.
El-Dakar, A. Y., G. D. I. Hassanen, S. I. Ghoneim, and O. A. Zenhom. 2003. Daily optimum energy feeding of rabbitfish Siganus rivulatus: Effect of dietary energy level at various feeding rate on performance of rabbitfish, Siganus. P. 123-128. Aquaculture America Conference 2003, December 18 2003. American Aquaculture Society, Baton Rouge, Louisiana.
El-Sayed, A. M. and D. L. Jr Garling. 1988. Carbohydrate-to-lipid ratio in diets for Tilapia zillii fingerlings. Aquaculture 73: 157-153.
Fernández, F., A. G. Miquel, M. Córdoba, M. Varas, I. Metón, A. Caseras, and I. V. Baanante. 2007. Effect of diets with distinct protein-to-carbohydrate ratios on nutrient digestibility, growth performance, body composition and liver intermediary enzyme activities in gilthead sea bream (Sparus aurata, L) fingerlings. J Exp Mar Biol Ecol. 343: 1-10.
Figueiredo-Silva, A. C., G. Corraze, P. Rema, J. Sanchez-Gurmaches, J. Gutiérrez, and L. M. P. Valente. 2009. Blackspot seabream (Pagellus bogaraveo) lipogenic and glycolytic pathways appear to be more related to dietary protein level than dietary starch type. Aquaculture. 291: 101-110.
Hatlen, B., B. Grisdale-Helland, and S. J. Helland. 2005. Growth, feed utilization and body composition in two size groups of Atlantic halibut (Hippoglossus hippoglossus) fed diets differing in protein and carbohydrate content. Aquaculture. 249: 401-408.
Hemre, G. I., T. P. Mommsen, and A. Krogdahl. 2002. Carbohydrates in fish nutrition: Effect on growth, glucose metabolism and hepatic enzyme. Aquacult Nutri. 8: 175-194.
Hutchins C. G., S. D. Rawles, and D. M. Gatlin. 1998. Effects of dietary carbohydrate kind and level on growth, body composition and glycemic response of juvenile sunshine bass (Morone chrysops female × M. saxatilis male). Aquaculture. 161: 187-199.
Kaushik, S. J., and A. D. Oliva-Teles. 1985. Effect of digestible energy on nitrogen and energy balance in rainbow trout. Aquaculture. 50: 89-101.
Kim, J. D., and S. J. Kaushik. 1992. Contribution of digestible energy from carbohydrates and estimation of protein / energy requirements for growth of rainbow trout (Oncorhynchus mykiss). Aquaculture. 106: 161-169.
Kumar, S., N. P. Sahu, A. K. Pal, D. Choudhury, S. Yengkokpam, and S. C. Mukherjee. 2005. Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in L. rohita juveniles. Fish Shellfish Immun. 19: 331-344.
Kumar, V., N. P. Sahu, A. K. Pal, S. Kumar, and S. K. Gupta. 2008. Gelatinized to no gelatinized starch ratio in the diet of Laeo rohita: Effect on digestive and metabolic response and growth. J Anim Physiol and An N. 92: 492-502.
Mohapatra, M., N. P. Sahu, and A. Chaudhari. 2003. Utilization of gelatinized carbohydrate in diet of Labeo rohita fry. Aquacult Nutr. 9: 189-196.
Muzinic, L. A., K. R. Thompson, L. S. Metts, S. Dasgupta, and C. D. Webster. 2006. Use of turkey meal as partial and total replacement of fish meal in practical diets for sunshine bass (Morone chrysops × Morone saxatilis) grown in tanks. Aquacult. Nutr. 12: 71-81.
Nankervis, L., S. J. Matthews, and P. Appleford. 2000. Effect of dietary non-protein energy source on growth, nutrient retention and circulating insulin-like growth factor l and triiodothyronine levels in juvenile barramundi, Lates calcarifer. Aquaculture. 191: 323-335.
Peres, H., P. Gonc¸alves, and A. Oliva-Teles. 1999. Glucose tolerance in gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax). Aquaculture. 179: 415-423.
Peres, H., and A. Oliva-Teles. 2002. Utilization of raw and gelatinized starch by European sea bass (Dicentrarchus labrax) juveniles. Aquaculture. 205: 287-299.
Prisingkorn, W. 2018. The effect of high fat and high carbohydrate diets on Growth Performance, Histology and Transcriptome in Blunt Snout Bream (Megalobrama amblycephala). Ph.D. Thesis. Huazhong Agricultural University, P.R. China.
Prisingkorn, W., I. JakovlicI, S. K. Yi, F. Y. Deng, Y. H. Zhao, and W. M. Wang. 2019. Gene expression patterns indicate that high-fat-high-carbohydrate diet causes mitochondrial dysfunction in blunt snout bream (Megalobrama amblycephala). Genome. 62: 53-67.
Prisingkorn, W., P. Prathomya, I. Jakovlic, H. Liu, Y. H. Zhao, and W. M. Wang. 2017. Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala). BMC Genomics. 18: 856.
Ren, M., H. M. Habte-Tsion, J. Xie, B. Liu, Q. Zhou, X. Ge, L. Pan, and R. Chen. 2015. Effects of dietary carbohydrate source on growth performance, diet digestibility and liver glucose enzyme activity in blunt snout bream, Megalobrama amblycephala. Aquaculture. 438: 75-81.
Rosas, C., G. Cuzon, G. Gaxiola, C. Pascual, G. Taboada, L. Arena, and A. Van Wormhoudt. 2002. An Energetic and Conceptual Model of the Physiological Role of Dietary Carbohydrates and Salinity on Litopenaens vannamei juveniles. J.Eep. Mar. Biol. 286: 47-67.
Rungruangsak-Torrissen, K., A. Rustad, J. Sunde, S. A. Eiane, H. B. Jensen, J. Opstvedt, E. Nygard, T. A. Samuelsen, H. Mundheim, U. Luzzana, and G. Venturini. 2002. In vitro digestibility based on fish crude enzyme extract for prediction of feed quality in growth trials. J. Sci. Food Agricult. 82: 644-654.
Sagada, G., J. Chen, B. Shen, A. Huang, L. Sun, J. Jiang, and C. Jin. 2017. Optimizing protein and lipid levels in practical diet for juvenile northern snakehead fish (Channa argus). Anim Nutr. 3: 156-163.
Samantaray, K., and S. Mohanty. 1997. Interactions of dietary levels of protein and energy on fingerling snakehead, Channa striate. Aquaculture. 156: 241-249.
Santigosa, E., J. Sanchez, F. Medale, S. Kaushik, J. Perez-Sanchez, and M. A. Gallardo. 2008. Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture. 282: 68-74.
Sá, R., P. Pousáo-Ferreira, and A. Oliva-Teles. 2008. Effect of dietary starch source (normal versus waxy) and protein levels on the performance of white sea bream Diplodus sargus (Linnaeus) juveniles. Aquac Res. 39: 1069-1076.
Shalaby, S. M. 1998. Nutrition requirements of rabbitfish, Siganus rivulatus, fingerlings. Ph.D. Thesis, Alexandria University, Egypt.
Shiau, S. Y. 1997. Utilization of carbohydrates in warmwater fish with particular reference to tilapia, Oreochromis niloticus x O. aureus. Aquaculture. 151: 79-96.
Shyong, W. J., C. H. Huang, and H. C. Chen. 1998. Effects of dietary protein concentration on growth and muscle composition of juvenile Zacco barbata. Aquaculture. 167: 35-42.
Singer, T. D., V. G. Mahadevappa, and J. S. Ballantyne. 1990. Aspects of the energy metabolism of Lake sturgeon Acipenser fulvescens with special emphasis on lipid and ketone body metabolism. Can. J. Fish. Aquat. Sci. 47: 873-881.
Small, B. C., and J. H. J. Soares. 1999. Effect of dietary carbohydrate on growth, glucose tolerance and liver composition of juveniles striped bass. North American Journal of Aquaculture. 61:286-292.
Song, Z., I. Deaciuc, Z. Zhou, M. Song, T. Chen, D. Hill, and C. J. McClain. 2007. Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis. Am. J. Physiol. Gastrointest. Liver Physiol. 293: 894-902.
Stone, D. A. J. 2003. Dietary carbohydrate utilization by fish. Rev Fish Sci. 11: 337-369.
Tan, Q., S. Xie, X. Zhu, W. Lei, and Y. Yang. 2007. Effect of dietary carbohydrate-to-lipid ratios on growth and feed utilization in Chinese longsnout catfish (Leiocassis longirostris Günther). J Appl Ichthyol. 23: 605-610.
Tapia-Salazar, M., W. Bureau, S. Panserat, G. Corraze, and D. P Bureau. 2006. Effect of DHA supplementation on digestible starch utilization by rainbow trout. Brit J Nutr. 95: 76-87.
Van der Meer, M. B., J. E. Zamora, and M. C. Verdegem. 1997. Effect of dietary lipid level on protein utilization and the size and proximate composition of body compartments of Colossoma macropomum (Cuvier). Aquac Res. 28: 405-417.
Wang, Y., Y. J. Liu, L. X. Tian, Z. Y. Du, J. T. Wang, S. Wang, and W.P. Xiao. 2005. Effects of dietary carbohydrate level on growth and body composition of juvenile tilapia, Oreochromis niloticus x O. aureus. Aquac Res. 36: 1408-1413.
Watanabe, W. O., S. C. Ellis, and J. Chaves. 2001. Effect of dietary lipid and energy to protein ratio on growth and feed utilization of juvenile mutton snapper Lutjanus analis fed isonitrogenous diets at two temperatures. J. World Aquac. Soc. 32: 30-40.
Wilson, R. P. 1994. Utilization of dietary carbohydrate by fish. Aquaculture. 124: 67-80.
Yigit, M., Ö. Yardim, and S. Koshio. 2002. The protein sparing effects of high lipid levels in diets for rainbow trout (Oncorhynchus mykiss, W. 1792) with special reference to reduction of total nitrogen excretion. The Israeli Journal of Aquaculture-Bamidgeh. 54: 79-88.
Zehra, S., and M. Khan. 2012. Dietary protein requirement for fingerling Channa punctatus (Bloch), based on growth, feed conversion, protein retention and biochemical composition. Aquacult Int. 20: 383-395.
Zerin, S., Md. S. Ahmed, Md. S. Iqball, and Md. A. H. Chisty. 2010. Determination of in vitro protein digestibility of different feed ingredients for niloticus (Oreochromis niloticus). Bangladesh Res. Publ. J. 4: 87-94.
Zhou, C., X. Ge, J. Niu, H. Lin, Z. Huang, and X. Tan. 2015. Effect of dietary carbohydrate levels on growth performance, body composition, intestinal and hepatic enzyme activities, and growth hormone gene expression of juvenile golden pompano, Trachinotus ovatus. Aquaculture. 437: 390-7.