Effects of fertilization based on recommendations of All-rice1 application on growth, yield components, economic returns and environmental impacts of rice growing systems in Petchaburi province
Main Article Content
Abstract
Fertilizer use unmatched with nutrient requirements of rice and ignored existing nutrients in soils affects yields, production cost and environmental impacts of rice growing systems. The present study aimed to compare the effects of precision fertilizer use based on recommendations of All-rice1 application versus fertilizer use based on farmer’s experience on agricultural and economic traits and environmental impacts of rice growing systems in Petchaburi province. Results revealed that yield components (grains/spike, 1,000-grain weight, filled grain percentage and non-filled grain percentage) and production cost did not differ (P>0.05) between the two fertilization regimes. The All-rice1 rice yielded relatively more grains (142 kg/rai) by 20% (P<0.05), resulting in improved economic returns (1,187 Baht/rai) by 81% (P<0.05). In addition, environmental impact indicators (climate change, acidification potential and marine eutrophication potential) of the All-rice1 rice relatively lowered (P<0.05) by 20, 27 and 25%, respectively. Thus, precision fertilizer use recommended by All-rice1 application is to be one of the most promising options to maximize productivity while minimized the environmental impacts of rice growing systems.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กรมพัฒนาที่ดิน. 2548. ชุดดินสรรพยา. น. 37. ใน: เอกสารวิชาการ ลักษณะและสมบัติของชุดดินในภาคกลางของประเทศไทย. กรมพัฒนาที่ดิน กรุงเทพฯ.
ธนกฤต เขียวอร่าม และอุไรวรรณ ไอยสุวรรณ์. 2561. ผลของการจัดการรูปแบบปุ๋ยที่มีต่อการให้ผลผลิตและประสิทธิภาพการใช้ปุ๋ยของข้าวพันธุ์ปทุมธานี 1 ที่ปลูกในชุดดินสมุทรปราการ. น. 274-279. ใน: การประชุมวิชาการและนำเสนอผลงานวิจัยระดับชาติ ราชธานีวิชาการ ครั้งที่ 3 เรื่อง นวัตกรรมที่พลิกโฉมสังคมโลก 29 กรกฎาคม 2561. มหาวิทยาลัยราชธานี, อุบลราชธานี.
ยงยุทธ โอสถสภา อรรถศิษฐ์ วงศ์มณีโรจน์ และชวลิต ฮงประยูร. 2551. ปุ๋ยเพื่อการเกษตรยั่งยืน. สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพมหานคร.
อุไรวรรณ ไอยสุวรรณ์. 2557. การจัดการปุ๋ยตามค่าวิเคราะห์ดินต่อการเจริญเติบโต ผลผลิต และประสิทธิภาพการใช้ไนโตรเจนของข้าวที่ปลูกในชุดดินสรรพยา. วารสารเกษตร. 30: 133-140.
Brodt, S., A. Kendall, Y. Mohammadi, A. Arslan, J. Yuan, I.N. Lee and B. Linquist. 2014. Life cycle greenhouse gas emissions in California rice production. Field Crops Research. 169: 89–98.
Ecoinvent Centre. 2018. ecoinvent data v3.4. Swiss Centre for Life Cycle Inventories, St. Gallen.
FAOSTAT. 2021. Faostat. Available: www.fao.org. Accessed March 15, 2021.
Fageria, N. K. 2007. Yield physiology of rice. Journal of Plant Nutrition. 30: 843-879.
Hasler, K., S. Bröring, S.W.F. Omta, and H.W. Olfs. 2015. Life cycle assessment (LCA) of different fertilizer product types. European Journal of Agronomy. 69: 41-51.
IPCC (Intergovernmental Panel on Climate Change). 2006. Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. P. 4.1- 4.83. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds.). 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Volume 4 Agriculture. Forestry and Other Land Use Global Environmental Strategies, Kanagawa, Japan.
Isuwan, A., J. Chobtang, and W. Sirirotjanaput. 2018. Economic and environmental sustainability of rice farming systems in Thailand. In The 11th International Conference on Life Cycle Assessment of Food (LCA FOOD 2018). pp. 300-303. In conjunction with the 6th LCA AgriFood Asia and the 7th International Conference on Green and Sustainable Innovation (ICGSI). 16-20 October 2018.
Isuwan, A., and T. Keawaram. 2021. Effects of fertilizer regimes on growth yields and economic returns of Pathum Thani 1 rice grown on Sapphaya Soil Series. Walailak Journal. 18(2): 6838.
Kassam, A., and H. Brammer. 2016. Environmental implications of three modern agricultural practices: Conservation Agriculture, the System of Rice Intensification and Precision Agriculture. International Journal of Environmental Studies. 73: 702-718.
Myhre G.D.S., F.M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.F. Lamarque, D. Lee, B. Mendoza T. Nakajima, A. Robock, G. Stephens, T. Takemura, and H. Zhang. 2013. Anthropogenic and natural radiative forcing. pp 659-740. In: Stocker TF, Qin D, Plattner G-K et al. (eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA.
Nemecek, T., J. Schnetzer, and J. Reinhard. 2016. Updated and harmonised greenhouse gas emissions for crop inventories. International Journal of Life Cycle Assessment. 21: 1361–1378.
Nunes, F.A., M. Seferin, V.G. Maciel, S.H. Flôres, and M.A.Z. Ayub. 2016. Life cycle greenhouse gas emissions from rice production systems in Brazil: A comparison between minimal tillage and organic farming. Journal of Cleaner Production. 139: 799-809.
Posch, M., J. Seppälä, J.P. Hettelingh, M. Johansson, M. Margni, and O. Jolliet. 2008. The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterization factors for acidifying and eutrophying emissions in LCIA. International Journal of Life Cycle Assessment. 13: 477-486.
Pré Consultants. 2018. SimaPro 8.3 Life Cycle Assessment Software, Amersfoort, The Netherlands.
Rafiqul, I., C. Weber, B. Lehmann, and A.Voss. 2005. Energy efficiency improvements in ammonia production—perspectives and uncertainties. Energy. 30: 2487-2504.
SAS. 2003. Statistical Analysis System. SAS Release 9.1 for Windows. SAS Institute Inc. Cary, NC, USA.
Seppälä, J., M. Posch, M. Johansson, and J.P. Hettelingh. 2006. Country-dependent characterization factors for Acidification and Terrestrial Eutrophication based on Accumulated Exceedance as an impact category indicator. International Journal of Life Cycle Assessment. 11: 403-416.
Smith, P., D. Martino, and Z. Cai. 2007. Agriculture. P. 497–540. In: Climate Change: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA.
Struijs, J., A.H.W. Beusen, H. van Jaarsveld, and M.A.J. Huijbregts. 2009. Chapter 6. Aquatic eutrophication. [Online]. Available: http://www.lcia-recipe.net. Accessed April 13, 2016.
Thanawong, K., S.R. Perret, and C. Basset-Mens. 2014. Eco-efficiency of paddy rice production in Northeastern Thailand: a comparison of rain-fed and irrigated cropping systems. Journal of Cleaner Production. 73: 204-217.
Van Groenigen, K.J., C. van Kessel, and B.A. Hungate. 2013. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Natural Climate Chang. 3: 288–291.