Development of an automatic fish feeder system for Tilapia culture

Main Article Content

ชนาภา เทพเสนา
Atit Koonsrisook
Samorn Ponchunchoovong

Abstract

In the last decade, intensive Tilapia culture has become the most important for Thailand. The productive performance of fish farming depends on feeding management, including feed type, feeding frequency and feeding method can have a significant impact on the success of aquaculture fish. Human feeder was usually adopted to feed to apparent visual satiety. However, most available feeding amount tend to over-estimate feed requirements resulting in over feeding, poor feed efficiency, feed waste, poor water quality and nowadays agriculture sectors are lacking of employees. These causes affecting to economic disadvantages for fish farmers. An automation fish feeder could be played an important role to solve insufficient Agri-employees and improve feed consistency. Therefore, this research aimed to design and construct an automatic feeder using Arduino Mega as a microcontroller with contain warning system using solar cell. Experimental tilapia was randomly and weighted 500 fish per each pond (15×50×1.5 m3) with an average initial weight of 473.64 + 8.73 g and reared for four months during April to July, 2019. Fish from each pond were fed twice a day with commercial diet at a rate of 3% body weight, at 9 a.m. and 4 p.m. Fifty fish from each pond were random and weighted every month. Two different feeding methods (an automatic feeder and human feeder) were determined. Coefficient of variation (CV) of weight gain, final weight, daily growth rate (DGR), feed efficiency (FE) and protein efficiency ratio (PER) of tilapia were lower, when an automatic feeder was applied compared to human feeder. During the experimental trial the mean value of dissolved oxygen, pH and temperature from an automatic feeder were 5.82 ± 2.63 mg/L, 7.09 ± 0.93 and 27.63 ± 0.89 °C, respectively. These results demonstrate that use of an automatic feeder can improve the weight consistency of Tilapia.

Article Details

How to Cite
เทพเสนา ช., Koonsrisook, A. ., & Ponchunchoovong, S. . (2021). Development of an automatic fish feeder system for Tilapia culture. Khon Kaen Agriculture Journal, 50(1), 124–137. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/249474
Section
บทความวิจัย (research article)

References

กรมส่งเสริมอุตสาหกรรม. 2560. การตัดสินใจการลงทุน. แหล่งข้อมูล: https://bsid.dip.go.th/th/category/financial-accounting/fs-investmentdections ค้นเมื่อ 12 เมษายน 2561.

กองวิจัยและพัฒนาพันธุกรรมสัตว์น้ำ. 2560. ความแตกต่างระหว่างเพศและการผสมพันธุ์. แหล่งข้อมูล: http://www.fisheries.go.th/genetic/index.php/2013-11-15-01-35-24/85-2013-11-25-08-28-46/101-2014-02-06-01-52-39?showall=&start=3 ค้นเมื่อ 12 เมษายน 2561.

เกวลิน หนูฤทธิ์. 2563. สถานการณ์การผลิตและการค้าปลานิลและผลิตภัณฑ์ในปี 2563 และแนวโน้มปี 2564. กลุ่มเศรษฐกิจการประมง กองนโยบายและแผนพัฒนาการประมง กรมประมง, กรุงเทพฯ.

คณะกรรมการค่าจ้าง กระทรวงแรงงาน. 2563. ประกาศคณะกรรมการค่าจ้าง เรื่อง อัตราค่าจ้างขั้นต่ำ (ฉบับที่ 10). แหล่งข้อมูล: https://www.mol.go.th/wp-content/uploads/sites/2/2020/01/Prakadwage10-6Jan2020.pdf ค้นเมื่อ 20 มกราคม 2563.

สำนักวิจัยและพัฒนาประมงน้ำจืด. 2553. คู่มือการปฏิบัติทางการเพาะเลี้ยงสัตว์น้ำที่ดีสำหรับการผลิตสัตว์น้ำ (จี เอ พี). แหล่งข้อมูล: https://www.fisheries.go.th/sf-satun/images/download/gap.pdf ค้นเมื่อ 20 เมษายน 2561.

Chang, C. M., W. Fang, R. C. Jao, C. Z. Shyu, and I. C. Liao. 2005. Development of an intelligent feeding controller for indoor intensive culturing of eel. Aquacultural Engineering. 32(2): 343-353.

Mattos, B.O., E.C.T.N. Filho, K.A., Barreto, L.G.T., Braga, and R.F., Silva. 2016. Self-feeder systems and infrared sensors to evaluate the daily feeding and locomotor rhythms of Pirarucu (Arapaima gigas) cultivated in outdoor tanks. Aquaculture. 457: 118-123.

Noor, M. Z. H., A. K. Hussian, M. F. Saaid, M. S. A. M. Ali, and M. Zolkapli. 2012. The design and development of automatic fish feeder system using PIC microcontroller. p.343-347. In: 2012 IEEE Control and System Graduate Research Colloquium. July 16–17, 2012, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia.

Ogunlela, A. O., and A. A. Adebayo. 2016. Development and Performance Evaluation of an Automatic Fish Feeder. Journal of Aquaculture Research and Development. 7(2): 1-4.

Ozigbo, E., C. Anyadike, F. Gbadebo, and R. Okechukwu. 2013. Development of an automatic fish feeder. African Journal of Root and Tuber Crops. 10(1): 27-32.

Premalatha, K., P. Maithili, and J. J. Nandhini. 2017. Smart Automatic Fish Feeder. International Journal of Computer Sciences and Engineering. 5(7): 92-95.

Saturday auto feed. 2561. Saturday auto feed 15 kg. Available: https://www.facebook.com/saturdayautofeed1/ Accessed Apr. 12, 2018.

Shaari, M. F., M. E. I. Zulkefly, M. S. Wahab, and F. Esa. 2011. Aerial fish feeding system. p.2135-2140. In: International Conference on Mechatronics and Automation. August 7-10, 2011, Beijing, China.

Stone, N. M., and H. K., Thomforde. 2004. Understanding your Fish Pond Water Analysis Report. University of Arkansas Cooperative Extension Service Printing Services, Little Rock, AR, USA.

Texas hunter products. 2018. Texas Hunter Products Directional Fish Feeder w/Adjustable Legs - 70 lb. Available: https://www.texashunterproducts.com/fish-feeders/ Accessed Apr. 12, 2018.

Wei, H. C., S. M. Salleh, A. M. Ezree, I. Zaman, M. H. Hatta, B. A. Zain, S. Mahzan, M. N. A. Rahman, and W. A. W. Mahmud. 2017. Improvement of automatic fish feeder machine design. p.1-7 In: International Conference on Material Physics and Mechanics 2017. July 22-23, 2017, Universiti Tun Hussein Onn Malaysia, Langkawi, Malaysia.

Zulkefly, M. E. I. 2010. Development of PLC Controlled Aerial Fish Feeding System. Doctoral dissertation. Universiti Tun Hussein Onn Malaysia, Langkawi, Malaysia.