Effects of Multi-Strain Bacillus Species Supplementation in Drinking Water on Cecal Microbiology, Apparent Nutrient Digestibility, and Small Intestinal Morphology of Broilers
Main Article Content
Abstract
The current ban on the usage of antibiotics as a feed additive forced for alternative sources of antibiotics in the feed industry. Presently, probiotics are measured as a potential substitute for antibiotic as a live biotherapeutic mediator. Accordingly, this study was concentrated on estimating the effect of multi-strain Bacillus species (Bacillus spp.) on cecal microbiology, apparent nutrient digestibility, and small intestinal morphology of broiler chickens. A total of three hundred 1-d-old broilers (Ross 308) were randomized into 3 groups, each group with 4 replications (n = 10). The treatments were, Bacillus spp. supplementation in drinking water with 0 (control), 1, and 2 g/l. During 21 day of experiment, diets and drinking water were offered ad libitum to the birds. The results of the Bacillus spp. supplementation groups revealed a significant improvement in nutrient digestibility of dry matter (linear, P<0.05), and affected to ether extract and crude fiber digestibility (quadratic, P<0.01). Also, lactic acid bacteria (Lactobacillus sp. and Bifidobacterium sp.) (quadratic, P<0.01) and Enterococcus spp. (linear, P<0.05) in cecum increased in the Bacillus spp. supplementation groups. However, a number of microber in cecum and apparent nutrient digestibility were not different between 1 g/l and 2 g/l supplementation groups (P>0.05). The supple mentation of Bacillus spp. did not affect small intestinal morphology (P>0.05). This study showed that multi-strain Bacillus species has the beneficial effect on nutrient digestibility and improved microbial ecology of broiler chickens fed 1 and 2 g/l of Bacillus spp. in drinking water.
Article Details
References
มนัสนันท์ นพรัตน์ไมตรี,วรางคณา กิจพิพิธ,ชวลิต ผึ้งปฐมภรณ์,ศราวุธ ม่วงเผือก, เอกกมล กมลลาภวรกุล, นาฏยา แบ่งลาภ และเสาวภา เขียนงาม. 2558. ผลของการเสริมซินไบโอติกส์ต่อสมรรถภาพการผลิตไก่เนื้อและผลตอบแทนทางเศรษฐกิจ. วารสารเกษตร. 31(3): 221-230.
ศรีสุดา ศิริเหล่าไพศาล, พงศธร กุนัน, เกศรา อำพาภรณ์ และนาฎยา แบ่งลาภ. 2558. ผลของการเสริมโปรไบโอติครวม (Bactosac-P) ต่อประสิทธิภาพ การผลิตคุณภาพไข่ และคอเลสเตอรอลในเลือดในไก่ไข่. แก่นเกษตร. 43(2): 229-238.
Abdalqader, A., A.R. Al-Fataftah, and G. Das. 2013. Effects of dietary Bacillus subtilis and inulin supplementation on performance, eggshell quality, intestinal morphology, and microflora composition of laying hens in the late phase of production. Anim. Feed Sci. and Tech. 179: 103-111.
Ahmed, S.T., Md.M. Islam, H.S. Mun, H.J. Sim, Y.J. Kim, and C.J. Yang. 2014. Effects of Bacillus amyloliquefaciens as a probiotic strain on growth performance, cecal microflora, and fecal noxious gas emissions of broiler chickens. Poult. Sci. 93(8): 1963-1971.
Al-Fataftah, A., and A. Abdelqade. 2014. Effects of dietary Bacillus subtilis on heatstressed broilers performance, intestinal morphology and microflora composition. Anim. Feed Sci. and Tech. 198: 279–285.
AOAC. 1995. Official Method of Analysis. 19th Edition. Association of Official Analytical Chemist, Washington, DC.
Awad, W.A., J. BÖhm. E. Razzazi-fazeli, K. Ghareeb, and J. Zentek. 2006. Effects of addition of a probiotic Microorganism to broiler diets contaminated with deoxynivalenol on performance and histological of intestinal villi of broiler chicken. Poult Sci. 85: 974-979.
Awad, W.A., K. Ghareeb, S. Abdel-Raheem, and J. BÖhm. 2009. Effects of dietary inclusion of probiotic and symbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chicken. Poult. Sci. 88: 49-55.
Barton, M.D. 2000. Antibiotic use in animal feed and its impact on human health. Nutr. Res. Rev. 13: 279-299.
Boerlin, P., and R.J. Reid-Smith. 2008. Antimicrobial resistance: its emergence and transmission. Anim. Health Res. Rev. 9: 115-126.
Chaiyawan, N., P. Taveeteptaikul, B. Wannissorn, S. Ruengsomwong, P. Klungsupya, W. Buaban, and P. Itsaranuwat. 2010. Characterization and probiotic properties of Bacillus Strains isolated from broiler. Thai J. Vet. Med. 40(2): 207-214.
Choi, J.Y., P.L. Shinde, I.K., Kwon, Y.H. Song, and B.J. Chae. 2009. Effect of wood vinegar on the performance, nutrient digestibility and intestinal microflora in weanling pigs. Asian-Australas J Anim. Sci. 22: 267-274.
Cummings, J.H. 1981. Short chain fatty acids in the human colon. Gut. 22(9): 763-769.
Daneshmand, A., GH. Sadeghi, A. Karimi, and A. Vaziry. 2011. Effect of oyster mushroom (Pleurotus ostreatus) with and without prebiotic on growth performance and some blood parameter of male broilers. Anim. Feed Sci. and Tech. 170: 91-96.
Dizaji B.R., S. Hejazi, and A. Zakeri. 2013. Effects of dietary supplementations of prebiotics, probiotics, synbiotics and acidifiers on growth performance and organs weights of broiler chicken. European J. Exp. Biol. 2(6): 2125 -2129.
Ewing, W. and N.TuckerL. 2009. A.The Living Gut Nottingham University Press, Chicago.
Fenton, T.W., and M. Fenton. 1979. An improved method for chromic oxide determination in feed and feces. Can. J. Anim. Sci. 59: 631-634.
Huff, G.R., W.E. Huff, N.C. Rath, and G. Tellez. 2006. Limited treatment with beta1,3/1,6-glucan improves production values of broiler chickens challenged with Escherichia coli. Poult. Sci. 85: 613-618.
Jansen, M, F. Nuyens, J. Buyse, S. Leleu, and L. Van Campenhout. 2016. Interaction between fat type and lysolecithin supplementation in broiler feeds. Poult. Sci. 94: 2506–2515.
Jeong, J.S. and I.H. Kim. 2014. Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poult. Sci. 93(12): 3097-3103.
Knapp, C.W., J. Dolfing, P.A. Ehlert, and D.W. Graham. 2010. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environment Science and Technology. 44: 580–587.
Liu, X., H. Yan, L. Lv, Q. xu, C. Yin, K. Zhang, P. Wang, and J. Hu. 2012. Growth performance and meat quality of broiler chickens supplemented with Bacillus licheniformis in drinking water. Asian-Australas J Anim. Sci. 25(5): 682-689.
Mac Farlane, S., and G.T. Mac Farlane. 2003. Regulation of short chain fatty acid production. Proceeding of the nutrition society (62): 67-72.
Mountzouris, K.C., P. Tsirsikos, I. Palamidi, A. Arvanniti, M. Mohnl, G. Schatmayr, and K. Fegeros. 2010. Effect of probiotic inclusion level in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulin, and cecal microflora composition. Poult. Sci. 89: 588-593.
National Research Council. 1994. Nutrient requirement of poultry. 9th Edn. National
Academy Press, Washington, DC. Park, J.H., and I.H. Kim. 2014. Supplemental effect of probiotic Bacillus subtilis B2A on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality of growing broiler chicks. Poult. Sci. 93(8): 2054-2059.
Peric-Hupkes, D., W. Meuleman, L. Pagie., S.W. Bruggeman, I. Solovei, W. Brugman, S. Gräf, P. Flicek, R.M. Kerkhoven, M. Van LohuizenM. Reinders, L. Wessels, and B. van Steensel. 2010. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Molecular Cell. 38 (4): 603-613.
R Core Team. 2013. R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available: http:/www.R-project.org. Accessed Apr. 4, 2017.
Sakamoto, K., H. Hirose, A. Onizuka, M. Hayashi, N. Futamura, Y. Kawamura, and T. Ezaki. 2000. Quantitative study of change in intestinal morphology and mucous jel on total parenteral nutrition in rats. J. Surg. Res. 94: 99-106.
Sen, S, S.L. Ingale, W.Y. Kim, J.S. Kim, K.H. Kim, J.D. Lohakare, and B.J. Chae. 2012. Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Res.Vet. Sci. 93(1): 264–268.
Sharifi, S.D., A. Dibamerhr, H. Lotfollahian, and B. Baurhoo. 2012. Effects of flavomycin and probiotic supplementation to diets containing different sources of growth performance, intestinal morphology, apparent metabolizable energy, and fat digestibility in broiler chickens. Poult. Sci. 91: 918-927.
Steel, R.G.D. and J.H. Torrie. 1992. Principles and procedure statistic. 2nd Edn., McGrew-Hill Book Co., Inc., Singapore.
Tao, A.Y., and H.M. Tan. 2007. Evaluation of the performance and intestinal gut microflora of broilers fed on corn-soy diets supplemented with Bacillus subtilis PB6 (CloSTAT). J. App. Poult. Res. 16: 296-303.
Timmerman, H.M., A. Veldman, E. van den Elsen, F.M. Rombouts, and A.C. Beynen. 2006. Mortality and growth performance of broilers given drinking water supplemented with chickenspecific probiotics. Poult. Sci. 85(8): 1383-1388.
Topping, D.L., and P.M. Clifton. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physio. Rev. 81(3): 1031-1064.
Tsirtsikos, P., K. fegeros, C. Balaskas, A. Kominakis, and K.M. Mountzouris. 2012. Dietary probiotic inclusion level modulates intestinal mucin composition and mucosal morphology on broilers. Poult. Sci. 91: 1 860-1868.
Wiseman, M. 2012. Evaluation of Tasco® as a Candidate Prebiotic in Broiler Chickens Dalhousie University, Halifax, Nova Scotia.