Maturity and Quality Assessment of Biochar Composts through C-cycling Enzyme Activity Profiles and CO2-C Emissions
Main Article Content
Abstract
Decomposition process of organic carbon compounds rendered by C-cycling enzymes are important in the formation of mature compost. However, there is less information on how the use of biochar as raw material in microbially decomposition process. It is necessary to determine more precise maturity indices, thus, the objectives of this research were to examine the effect of various rates of biochar on C-cycling enzyme activities and CO2-C emissions during composting, notably to measure compost quality and maturity using a novel approach based on enzyme activity indices. The composting mixtures were prepared from different organic materials: biochar (BC), rice straw (RS), and goat manure (GM). The experiment was divided into 4 treatments include the following: 1) control (RS + GM), 2) (0.5BC: 1RS)+GM, 3) (1BC: 1RS)+GM and 4) (1.5BC: 1RS)+GM; therefore, treatments 2, 3, and 4 were set up similar to the control but the biochars were added at initial ratio of BC: RS equaled to 0.5 to 1, 1 to 1, and 1.5 to 1, respectively. Results revealed that compost in pile (1BC: 1RS) + GM had highest cumulative respiration (1135 mg CO2-C kg-1 compost) compared to the control (P < 0.05). At day 21 after composting, compost in this pile also showed highest B-glucosidase activity (2.59 µmol dicq g-1 compost h-1) and phenoloxidase activity (273 g p-nitrophenol g-1 compost h-1) compared to the other treatments (P < 0.05). There were significant positive effects of B-glucosidase activity on cumulative CO2-C at the initial (r = 0.6027) and later stage (r = 0.6624) of decomposition (P < 0.05) indicating a potentially decomposition of cellulose by microbes. Meanwhile, phenoloxidase activity had positive effects on cumulative respiration only at the later stage of decomposition (r = 0.8129) (P < 0.05) pointing out that soil microbes might switch their metabolisms to capitalize on lignin and polyphenols. This study indicated that C-cycling enzyme activity profiles can be used as co-indicators for judging the maturity and quality of biochar compost. According to this reason, the compost in pile (1BC: 1RS) + GM became stable and reached maturity at day 42 of compositing periods.
Article Details
References
กรมปศุสัตว์. 2560. ข้อมูลจำนวนปศุสัตว์ในประเทศไทย ปี 2560. แหล่งข้อมูล: http://www.oic.go.th/FILEWEB/CABINFOCENTER28/DRAWER090/GENERAL/DATA0000/00000061.PDF. ค้นเมื่อ 22 สิงหาคม 2561.
กรมวิชาการเกษตร. 2548. ประกาศกรมวิชาการเกษตร เรื่อง มาตรฐานปุ๋ยอินทรีย์ พ.ศ. 2548. ราชกิจจานุเบกษา. เล่ม 122 ตอนพิเศษ 109 ง., หน้า 9-10.
ภาณุเดชา กมลมานิทย์, ณัฐพงษ์ พานวงษ์ และพฤกษา หล้าวงษา. 2561. อิทธิพลของอัตราส่วนถ่านชีวภาพต่อฟางข้าวร่วมกับมูลแพะต่อคุณสมบัติทางกายภาพ เคมี และชีววิทยาของปุ๋ยหมัก. แก่นเกษตร. 46: Unpaged.
ภาณุเดชา กมลมานิทย์, ปัทมา วิตยากร, วรรณวิภา แก้วประดิษฐ์, และ จอร์จ คาดิช. 2557. กิจกรรมของเอนไซม์ในการย่อยสลายสารอินทรีย์ต่างคุณภาพที่ใส่ในดินทรายเป็นระยะเวลา 14 ปี. แก่นเกษตร. 42: 531-538.
Alef, K., and P. Nannipieri. 1995. Methods in Applied Soil Microbiology and Biochemistry:Enzyme Activities. 452 Academic Press,
London.Anderson, J. P. E. 1982. Soil respiration, pp.831-871. In: Page, A. L., R. H. Miller, andD. R. Keeney (eds.), Agronomy Monograph
Number 9, Part II. Chemical and BiologicalProperties, 2nd. American Society ofAgronomy and Soil Science Society ofAmerica, Madison, USA.
Barker, J.C. and F.R. Walls. 2002. Livestock manure production rates and nutrient content. Available: http://ipmwww.ncsu.edu/agchem/chptr10/1011.pdf. Accessed Aug. 22, 2018.
Benitez, E, R. Nogales, C. Elvira, G. Masciandaro, B. Ceccanti. 1999. Enzyme activities as indicators of the stabilization of sewage sludges composting with Eisenia foetida. Biores. Technol. 67: 297-303.
Bohacz, J. and T. Kornillowicz-Kowalska. 2009. Changes in enzymatic activity in composts containing chicken feathers. Biores. Technol. 100: 3604-3612.
Camps, M. 2015. The use of biochar in composting. International biochar initiative. [Online]. Available: www.biocharinternational.org [2017. December 25].
Canero , D. C. and M. I. G. Roncero. 2008. “Functional analyses of laccase genes from Fusarium oxysporum”. Mycology. 98: 509-518.
Elzobair , K. A., M. E. Stromberger, J. A. Ippolito. 2016a. Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress. Chemosphere. 142: 114-119.
Elzobair , K. A., M. E. Stromberger, J. A. Ippolito and R. D. Lentz. 2016b. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere. 142: 145-152.
Gomez, R. B., F. V. Lima and A. S. Ferrer. 2006. The use of respiration indices in the composting process: a review. Waste Manage Res. 24: 37-47.
Haug, R. T. 1993. The Practical handbook of compost engineering. Boca Raton [Fla.] [etc.]: Lewis.
Hendel, B., R.L. Sinsabaugh, and J. Marxsen. 2005. Lignin-degrading enzymes: phenoloxidase and peroxidase. In: M.A.S. Graça, F. Bärlocher, and M.O. Gessner. (Eds.). Methods to study litter decomposition: a practical guide, Springer, Dordrecht.
Jindo, K., M. A. Sanchez-Monedero, T. Hernández, C. García, T. Furukawa, K. Matsumoto, and F. Bastida. 2012. Biochar influences the microbial community structure during manure composting with agricultural wastes. Sci. Total Environ. 416: 476-481.
Kamolmanit, B. and A. Reungsang, A. 2006. “Effect of cassava pulp and swine manure compost on growing plants in greenhouse.” J. Water Environ. Technol. 4: 9-32.
Kamolmanit, B., P. Vityakon, W. Kaewpradit, G. Cadisch and F. Rasche. 2013. Soil fungal communities and enzyme activities in a sandy, highly weathered tropical soil treated with biochemically contrasting organic inputs. Biol. Fertil. Soils. 49: 905-917.
Kandeler, E. 2007. Physiological and biochemical methods for studying soil biota and their function. P. 53–83. In: Paul, E.A. Soil Microbiology, Ecology, and Biochemistry. Elsevier, CA.
Lehmann, J. and S. Joseph. 2009. Biochar for environmental management: an introduction. P. 1-12. In: Lehmann, J. and S. Joseph. Biochar for Environmental Management: Science and Technology. Earthscan, London.
Lehmann, J., M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday and D. Crowley. 2011. Biochar effects on soil biota – a review. Soil Biol. Biochem. 43: 1812-1836.
Nikaeen, M., A. H. Nafez, B. Bina, B. F. Nabavi, and A. Hassanzadeh. 2015. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. Waste Manage. 39: 104-110.
Puttaso, A., P. Vityakon, P. Saenjan, V. Treloges and G. Cadisch. 2011. Relationship between residue quality, decomposition patterns, and soil organic matter accumulation in a tropical sandy soil after 13 years. Nutr. Cycl. Agroecosyst. 89: 159-174.
Sinsabaugh, R. L. 1994. Enzymic analysis of microbial pattern and process. Biol Fertil Soils. 17: 69-74
Sinsabaugh, R. L. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry. 42: 391-404.
Smith, J. L., H. P. Collins and V. L. Bailey. 2010. The effect of young biochar on soil respiration. Soil Biol. Biochem. 42: 2345-2347.
Tiquia, S. M. 2005. Microbiological parameters as indicators of compost maturity. Appl. Microb. 99: 816-828.
Vinhal-Freitas, I. C, D. R. B. Wangen, A. S. Ferreira, G. F. Corrêa, and B. Wendling. 2010. Microbail and enzymatic activity in soil after organic composting. R. Bras. Ci. Solo. 34: 757-764.