Expression of CIPK15 Gene in Thai Rice Varieties under Submergence
Main Article Content
Abstract
Some rice varieties be able to adapt for germination and growth under submergence since low oxygen condition during germination affect rice growth and productivity. CIPK15 gene is involved in rice germination adaptability under submergence. Therefore, the objective of this study was to evaluate the expression of CIPK15 gene in rice seedling under submergence and non-submergence for 14 days in 11 Thai rice varieties. The experimental design was 2 x 11 factorial in completely randomized design with 3 replications. The resulted found that the expression of CIPK15 gene was significant difference (P<0.05) among 11 rice varieties under submergence. The expression ratio of the CIPK15 gene between submergence and non-submergence classified rice into 2 groups, the first group was RD19 and the second group included Khao Pong Krai, Nam Roo, R258, Khao Dawk Mali105, Niaw Kiaw Ngoo, Pathum Thani1, RD10, RD14, San-pah-tawng1 and Suphan Buri1. Considering the expression of CIPK15 gene, the highest expression ratio of the CIPK15 gene between submergence and non-submergence was found in RD19. The nucleotide sequence analysis of the CIPK15 gene indicated that RD19 rice variety showed different nucleotide sequence compare to the other 10 rice varieties however, displayed similar sequence to the common wild rice (O. rufipogon). While the nucleotide sequence of CIPK15 were similar among the 10 rice varieties. The haplotype network analysis displayed that RD19 was included in the same haplotype with common wild rice (haplotype 1) while the 10 rice varieties were clustered in haplotype 2. Taken together, RD19, a deep-water rice variety, showed adaptability to submergence during germination indicated by displaying high level of relative intensity of CIPK15 gene expression between submergence and non-submergence. The results of this study can be used for developing molecular markers-assisted selection in the submergence tolerant rice breeding program.
Article Details
References
กรมส่งเสริมการเกษตร. 2560. การปรับปรุงทะเบียนเกษตรกร. แหล่งข้อมูล: http://farmer.doae.go.th/ecoplant/eco_report/report10_rice. ค้นเมื่อ 1 พฤศจิกายน 2561.
กระทรวงเกษตรและสหกรณ์. 2560. รายงานสถานการณ์ ภัยพิบัติด้านการเกษตร. แหล่งข้อมูล: https://www.moac.go.th/service_all-agriculture_situation. ค้นเมื่อ 2 พฤศจิกายน 2561.
สำนักงานวิจัยและพัฒนาข้าว. 2560. การเพาะปลูกข้าว. แหล่งข้อมูล: http://www.arda.or.th/kasetinfo/rice/rice_cultivate_species. html. ค้นเมื่อ 16 มีนาคม 2561.
สำนักงานวิจัยและพัฒนาข้าว. 2561. ฐานข้อมูลพันธุ์ข้าวรับรองของไทย. แหล่งข้อมูล: http://brrd.ricethailand.go.th/rvdb/. ค้นเมื่อ 20 กุมภาพันธ์ 2561.
สำนักวิจัยและพัฒนาข้าว. 2561. องค์ความรู้เรื่องข้าว. แหล่งข้อมูล: http://www.ricethailand. go.th/Rkb/varieties/index.phpfile=content.php&id=7.htm. ค้นเมื่อ 2 มีนาคม 2561.
อภิชาติ วรรณวิจิตร, สมวงษ์ ตระกูลรุ่ง, สุรพงษ์ สาคะรัง, ปนัดดา พีคะสูต และสมหมาย อมรศิลป์ . 2540. การปรับปรุงพันธุ์ข้าวทนน้ำท่วม. สถาบันวิจัยและพัฒนาแห่งมหาวิทยาลัยเกษตรศาสตร์.
Al-Ani, A., F. Bruzau, P. Raymond, V. Saint-Ges, J. M. Leblanc, and A. Pradet. 1985. Germination, respiration and adenylate energy charge of seeds at various oxygen partial pressures. Plant Physiol. 79: 885–890.
Atwell, B. J. and H. Greenway. 1987. Carbohydrate metabolism of rice seedlings grown in oxygen-deficient solution. J Exp Bot. 38: 466–478.
Bandelt, H. J., P. Forster and A. Rohl. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 16: 37-48.
Bewley, J. D. and M Black. 1985. Seeds: physiology of development and germination. Plenum Press. New York.
FAO. 2018. AGP - What are sustainable rice systems. Available: http://www.fao.org/agriculture/crops/thematic-sitemap/theme/spi/scpi-home/managingecosystems/sustainable-rice-systems/rice-what/en/. Accessed Nov. 14, 2001.
Hunt, R., Z. E. Sauna, S. V. Ambudkar, M. M. Gottesman, and C. Kimchi-Sarfaty. 2009. Silent (synonymous) SNPs: should we care about them?. Methods Mol Biol. 578: 23–39.
Hwang, Y. S., B. R. Thomas, and R. L. Rodriguez. 1999. Differential expression of α-amylase genes during seedling development under anoxia. Plant Mol Biol. 40: 911–920.
Ismail, A. M., E. S. Ella, G. V. Vergara, and D. J. Mackill. 2009. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Ann Bot. 103: 197–209.
Ilagan, L. A., R. P. Tablizo, R. B. Barba Jr, and N. A. Marquez. 2014. Soil fertility evaluation for rice production in Catanduanes Province, Philippines. IJSTR. 3: 81-87.
Jackson, M. B. 2004. The Impact of Flooding Stress on Plants and Crops. Available: http://www.plantstress.com/Articles/waterlogging_i/waterlog_i.htm. Accessed Jul. 3, 2017.
Kudahettige, N. P., C. Pucciariello, S. Parlanti, A. Alpi, and P. Perata. 2011. Regulatory interplay of the Sub1A and CIPK15 pathways in the regulation of α-amylase production in flooded rice plants. Plant Biol. 13: 611–619.
Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 33: 1870–1874.
Lee, K. W., P. W. Chen, C. A. Lu, S. Chen, T. H. David Ho, and S. M. Yu. 2009. Coordinated responses to oxygen and
sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal. 2: ra61.
Lee, K. W., P. W. Chen, and S. M. Yu. 2014. Metabolic adaptation to sugar/O2 deficiency for anaerobic germination and seedling growth in rice. Plant Cell Environ. 37: 2234–2244.
Librado, P. and J. Rozas. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25: 1451-1452.
Morishima, H., Y. Sano, and H. I. Oka. 1984. Differentiation of Perennial and Annual Types Due to Habitat Conditions in the Wild Rice Oryza perennis. Pl. Syst. Evol. 144: 119–135.
Park, M., H. K. Yim, H. G. Park, J. Lim, S. H. Kim, and Y. S. Hwang. 2010. Interference with oxidative phosphorylation enhances anoxic expression of rice alpha-amylase genes through abolishing sugar regulation. J Exp Bot. 61: 3235–3244.
Perata, P., J. Pozueta-Romero, T. Akazawa, and J. Yamaguchi. 1992. Effects of anoxia on starch breakdown in rice and wheat seeds. Planta. 188: 611–618.
Pusadee, T., B. Schaal, B. Rerkasem, and S. Jamjod. 2013. Population structure of the primary gene pool of Oryza sativa in Thailand. Genet Resour Crop Evol. 60: 335-353.
Pusadee, T., S. Jamjod, B. Rerkasem, and B. Schaal. 2016. Life-history traits, and geographical divergence in wild rice (Oryza rufipogon Griff.) gene pool in Indochina Peninsula region. Ann. Appl. Biol. 168: 52-65.
Sarobol, E. 2011. Mechanisms of plant responses to global climate change. KHON KAEN AGR. 39: 22-26.
Wongtamee, A., C. Maneechote, T. Pusadee, B. Rerkasem, and S. Jamjod. 2017. The dynamics of spatial and temporal population genetic structure of weedy rice (Oryza sativa f. spontanea Baker). Genet Resour Crop Evol. 64: 23-39.