Production of bacterial cellulose by Acetobacter xylinum using wastewater from pineapple processing as a carbon source

Main Article Content

Churairat Moukamnerd
Salalee Saenchang
Anat Krutjan
ชรินทร์ เตชะพันธุ์

Abstract

In order to reduce the cost of bacterial cellulose (BC) production, wastewater from pineapple processing was used as a substrate to produce bacterial cellulose by Acetobacter xylinum. Pineapple wastewater used in the studied was from the original pineapple processing without any modification. The BC yield reached to 0.19±0.12 g-dry weight/100 ml-pineapple wastewater after 10 days of fermentation, which was significantly higher than using Hestrin & Schramm medium (HS) (0.57±0.31 g-dry weight). To improve the production yield, supplements of KH2PO4, MgSO4, (NH4)2HPO4, acetic acid, critric acid and ascorbic acid at various concentration, were added to pineapple wastewater. The results showed that the addition of (NH4)2SO and acetic acid at 0.1% (w/v) and 1% (w/v) resulting in 4.05±0.11 and 3.65±0.12 g-dry weight of BC, respectively. Moreover, the addition of citric acid increased water holding activity to 1.22 times compared to pineapple wastewater without any addition substances.In conclusion, the wastewater from pineapple processing could be used as an alternative low cost substrate for BC production.

Article Details

How to Cite
Moukamnerd, C. ., Saenchang, S. ., Krutjan, A. ., & เตชะพันธุ์ ช. . (2018). Production of bacterial cellulose by Acetobacter xylinum using wastewater from pineapple processing as a carbon source. Khon Kaen Agriculture Journal, 46(3), 581–590. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/250118
Section
บทความวิจัย (research article)

References

สำนักวิจัยเศรษฐกิจการเกษตร, สถานการณ์สินค้าเกษตรที่สำคัญและแนวโน้มปี 2557, Available: https://goo.gl/f8wyXC. Accessed: March. 3, 2016
สุมน โพธิจันทร์. 2552. การใช้ประโยชน์จากวัสดุเหลือใช้ทางการเกษตรเป็นอาหารสัตว์ ศูนย์สารสนเทศและคณะกรรมการจัดการความรู้กรมปศุสัตว์. Available: https://goo.gl/yAfKZw. Accessed: Nov. 24, 2016
Alaban, C. A. 1962. Studies on the optimum conditions for nata de coco bacterium or nata formation in coconut water. Philippine Agriculturist. 45: 490-516.
AOAC. 2000. Official Method of Analysis of AOAC International. 17th ed. The Association of Official Analytical Chemists, Virginia
Carreira, P., J. A. S. Mendes, E. Trovatti, L. S. Serafim, C. S. R. Freire, A. J. D. Silvestre and C. P. Neto. 2011. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource Technology. 102: 7354-7360.
Cheng, K. C., J. M. Catchmark and A. Demirci. 2009. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng. 3: 12.
Compendium of Methods for Food Analysis 1sted, Chapter 2, 2003, p. 2-9, Department of Medical Sciences (DMSc), Thailand
Dayal, M. S., N. Goswami, A. Sahai, V. Jain, G. Mathur and A. Mathur. 2013. Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydrate Polymers. 94:12-16.
Esa, F., S. M. Tasirin and N. A. Rahman. 2014. Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia. 2: 113-119.
Goelzer, F. D. E., P. C. S. Faria-Tischer, J. C. Vitorino, M. R. Sierakowski and C. A. Tischer. 2009. Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Materials Science and Engineering: C. 29: 546-551.
Gomes, F. P., N. H. C. S. Silva, E. Trovatti, L. S. Serafim, M. F. Duarte, A. J. D. Silvestre, C. P. Neto and C. S. R. Freire. 2013. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass and Bioenergy. 55: 205-211.
Iguchi, M., S. Yamanaka and A. Budhiono. 2000. Bacterial Cellulose: A Masterpiece of Nature’s Arts. Journal of Materials Science. 35: 261-270.
Keshk, S. M. A. S. 2014. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydrate Polymers. 99: 98-100.
Kongruang, S. 2008. Bacterial Cellulose Production by Acetobacter xylinum Strains from Agricultural Waste Products. Applied Biochemistry and Biotechnology. 148: 245.
Kurosumi, A., C. Sasaki, Y. Yamashita and Y. Nakamura. 2009. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers. 76:333-335.
Li, Z., L. Wang, J. Hua, S. Jia, J. Zhang and H. Liu. 2015. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydrate Polymers. 120: 115-119.
Miller, G. L. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry. 31: 426-428.
Pacheco, G., C. R. Nogueira, A. B. Meneguin, E. Trovatti, M. C. C. Silva, R. T. A. Machado, S. J. L. Ribeiro, E. C. da Silva Filho and H. da S. Barud. 2017. Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Industrial Crops and Products. 107: 13-19.
Seker, D. C. and N. A. Mohd Zain. 2014. Response surface optimization of glucose production from liquid pineapple waste using immobilized invertase in PVA–alginate–sulfate beads. Separation and Purification Technology. 133: 48-54.
Wu, J.-M. and R.-H. Liu. 2013. Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. Journal of Bioscience and Bioengineering. 115:284-290.
Yang, X.-Y., C. Huang, H.-J. Guo, L. Xiong, J. Luo, B. Wang, X.-F. Chen, X.-Q. Lin & X.-D. Chen. 2014. Beneficial Effect of Acetic Acid on the Xylose Utilization and Bacterial Cellulose Production by Gluconacetobacter xylinus. Indian Journal of Microbiology. 54: 268-273.
Zeng, X., D. P. Small and W. Wan. 2011. Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydrate Polymers. 85: 506-513.