Evaluation on digestible organic matter and metabolisable energy of total mixed ration (TMR) containing fungal treated oil palm frond as roughage source using in vitro gas production technique

Main Article Content

Puwadon Hamchara
Pin Chanjula
อนุสรณ์ เชิดทอง

Abstract

This study was conducted to investigate the digestible organic matter and metabolisable energy of total mixed ration (TMR) containing different levels of fungal (Lentinus sajor-caju, LSc) treated oil palm frond (0, 33, 67 and 100% FTOPF) substitution for oil palm frond. In vitro gas production technique employed, using rumen mixed microbes inoculums from two male Holstein Friesian crossbred (50%) with an average body weight of 450±0.6 kg. This study was arranged according to a Completely Randomized Design. As the results, FTOPF 100% were significantly higher in soluble gas fraction (a, -2.92 ml), than FTOPF 0% (0.54 ml) (P < 0.05). However, fermentation of insoluble fraction (b) gas production rate (c) and potential of extent of gas production (d) values were similar among treatments (P > 0.05). Likewise, the digestible organic matter were 66.75, 64.72, 67.11 and 68.71%, respectively, the metabolisable energy (ME) were 2.22, 2.16, 2.23 and 2.28 Mcal/kg DM, respectively. Both digestible organic matter and metabolisable energy were not different among treatments (P > 0.05). In conclusion, FTOPF could be used beneficially up to 100% in TMR.

Article Details

How to Cite
Hamchara, P. ., Chanjula, P. ., & เชิดทอง อ. (2018). Evaluation on digestible organic matter and metabolisable energy of total mixed ration (TMR) containing fungal treated oil palm frond as roughage source using in vitro gas production technique. Khon Kaen Agriculture Journal, 46(4), 687–698. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/250155
Section
บทความวิจัย (research article)

References

จารุณี อิ่มเอิบ อังคณา หาญบรรจง องอาจ อินสังข์ และอรุณี อิงคกุล. 2551. องค์ประกอบทางเคมีและค่าการสลายตัวในกระเพาะรูเมนของวัตถุแห้ง และอินทรียวัตถุของทางใบปาล์มน้ำมัน. น. 235-244. ใน: การประชุมทางวิชาการของมหาวิทยาลัยเกษตรศาสตร์ ครั้งที่ 46 29 มกราคม - 1 กุมภาพันธ์ 2551. มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
ธีระ เอกสมทราเมษฐ์, ชัยรัตน์ นิลนนท์, ธีระพงศ์ จันทรนิยม ประกิจ ทองคำ และ สมเกียรติ สีสนอง. 2548. การจัดการสวนปาล์มน้ำมัน. น. 51-62. ใน: เส้นทางสู่ความสำเร็จการผลิตปาล์มน้ำมัน. สงขลา: ศูนย์วิจัยและพัฒนา การผลิตปาล์มน้ำมัน คณะทรัพยากรธรรมชาติ มหาวิทยาลัยสงขลานครินทร์, สงขลา.
เมธา วรรณพัฒน์. 2533. โภชนศาสตร์สัตว์เคี้ยวเอื้อง. หจก. ฟันนี่พับบลิชชิ่ง, กรุงเทพฯ.
สุนทร รอดด้วง, ไชยวรรณ วัฒนจันทร์ และ วันวิศาข์ งามผ่องใส. 2554. การประเมินอินทรียวัตถุที่ย่อยได้ และพลังงานที่ใช้ประโยชน์ได้ของอาหารผสมสำเร็จที่ใช้ทางใบปาล์มน้ำมันหมักเป็นแหล่งอาหารหยาบโดยใช้เทคนิคผลผลิตแก๊ส. ว. แก่นเกษตร. 39:251-260.
Adamovic, M., G. Grubic, I. Milenkovic, R. Jovanovic, R. Protic, L. Sretenovic, and L. J. Stoicevic. 1998. The biodegradation of wheat straw by Pleurotus ostreatusmushrooms and its use in cattle feeding. Anim. Feed Sci. Technol. 71:357–362.
Akinfemi, A., and O. A. Ogunwole. 2012. Chemical composition and in vitro digestibility of rice straw treated with Pleurotus ostreatus, Pleurotus pulmonariusand Pleurotus tuber-regium. Slovak J. Anim. Sci. 45:14-20.
AOAC. 1995. Official Methods of Analysis. 16Thed. Assoc. Off. Anal. Chem., Arlington, VA.
Chanjula, P., V. Petcharat, and C. Promkot. 2015. Nutritive value of oil palm frond treated with white rot fungi. P. 135-138. In: Proceedings of the 5th International Conference on Sustainable Animal Agricultural for Developing Countries (5th SAADC 2015), 27-30 October 2015. Chonburi, Thailand.
Fazaeli, H., and A. R. Talebian Masoodi. 2006. Spent wheat straw compost of Agaricus bisporus mushroom as ruminant feed. Asian-Australas. J. Anim. Sci. 6:845-851.
Fazaeli, H., Z. A. Jelan, H. Mahmodzadeh, J. B. Liang, A. Azizi, and A. Osman. 2002. Effect of fungal treated wheat straw on the diet of lactating cows. Asian-Australas. J. Anim. Sci. 11:1573-1578.
Hamed, A. H. M., and M. E. Elimam. 2010. Performance and digestibility in Nubian goats fed stream treated sorghum stover. Pak. J. Nutr. 9:298-301.
Ishida, M., and O. Abu Hassan. 1997. Utilization of oil palm frond as cattle feed. Japan Agric. Res. Quart. 13:41-47.
Kirk, T. K., and K. E. Hammol. 1992. What is the primary agent of lignin degradation in white rot fungi. P.535-540. In: Kuwahara, M. and M. Shimada. Biotechnology in plup and paper industry, Tokyo.
Mahesh M. S., and M. Mohini. 2013. Evaluation of Crinipellis sp. treated wheat straw based diet for ruminants under in vitro system. Indian. J. Anim. Nutr. 32: 25-29.
Menke, K. H., and H .Steingass, 1988. Estimation of energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 28: 7-55.
Menke, K.H., L. Raab, L. A. Salewski, H. Steingass, D. Fritz, and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. (Camb.). 93: 217-222.
Mertens, D. R. 1997. Creating a system for meeting the fiber requirements of dairy cow. J. Dairy Sci. 80: 1463-1481.
Nasehi, M., N. M. Torbatinejad, S. Zerehdaran, and A. R. Safaie. 2016. Effect of solid-state fermentation by oyster mushroom (Pleurotus florida) on nutritive value of some agro by-products. J. Appl. Anim. Res. 1: 1-6.
NRC. 1981. Nutrient Requirements of Goats: Angora, Dairy and Meat Goats in Temperate and Tropical Countries. Washington, D.C. : National Academy Press.
Okano, K., N. Ohkoshi, A. Nishiyama, T. Usagawa, and M. Kitagawa. 2009. Improving the nutritive value of madake bamboo, Phyllostachys bambusoides, for ruminants by culturing the white rot fungus Ceriporiopsis subvermisspora. Anim. Feed Sci. Technol. 152: 278-285.
Ørskov, E. R., and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. (Camb.) 92: 499-503.
Rahmana, M. M., M. Lourenco, H. A. Hassim, J. J. P. Baars, A. S. M. Sonnenbergc, J. W. Cone, J. De Boever, and V. Fievez. 2011. Improving ruminal degradability of oil palm fronds using white rot fungi. Anim. Feed Sci. Technol. 169: 157–166.
Rodrigues, M. A. M., P. Pinto, R. M. F. Bezerra, A. A. Dias, C. V. M. Guedes, V. M. G. Cardoso, J. W. Conec, L. M. M. Ferreira , J. Cola and C. A. Sequeira. 2008. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim. Feed Sci. Technol. 14: 326-338.
Sallam, S. M. A., M. E. A. Nasser, A. M. El-Waziry, I. C. S. Bueno, and A. L. Abdalla. 2007. Use of andin vitro rumen gas production technique to evaluate some ruminant feedstuffs. J. Applied Sci. Res. 3: 34-41.
Shrivastava, B., P. Nandal, A. Sharma, K. K. Jain, Y. P. Khasa, T. K. Das, V. Mani, N. J. Kewalramani, S. S. Kundu, and R. C. Kuhad. 2012. Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganaderma sp. rcckk02. Biores. Technol. 107: 347-357.
Supapong, C., A. Cherdthong, A. Seankamsorn, B. Khonkhaeng, M. Wanapat, S. Uriyapongson, N. Gunun, P. Gunun, P. Chanjula, and S. Polyorach. 2017. In vitro fermentation, digestibility and methane production as influenced by Delonix regia seed meal containing tannins and saponins. J. Anim. Feed Sci. 26: 123-130.
Steel, R. G. D., and J. H. Torrie. 1980. Principles and procedures of statistics: A Biometerial Approach. (The 2nd ed.). McGraw-Hill Book Co, New York.
Tuyen, D. V., H. N. Phuong, J. W. Cone, J. J. P. Baars, A. S. M. Sonnenberg, and W. H. Hendriks. 2013. Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Biores. Technol. 129: 256–263.
Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Method for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597.