Estimates of Genetic Parameters for Dairy Crossbred Female Fertility Traits

Main Article Content

Sayan Buaban
Jureeratn Sanpote
Monchai Duangjinda

Abstract

The investigated traits were age at first service (AFS, mo), age at first calving (AFC, mo), interval from calving to first service (DTFS, d), interval between first and last service (DFTC, d), interval from calving to conception or day open (DO, d), calving interval (CI, d), number of service per conception (NSPC, n), conception at first service (FSC, %), Pregnancy within 56d (P56, %) and pregnancy within 90d (P90, d). The studied objectives were 1) to estimate genetic parameters for various fertility traits of Thai dairy crossbred heifers and cows using univariate and bivariate analyses with Linear animal model (LAM) and 2) to compare the parameter estimates of fertility traits which are categorical and binary traits (NSPC, FSC, P56 and P90) with Threshold animal model (TAM) and LAM. The data from the Bureau of Biotechnology and Animal production, DLD calving between 2002 and 2015 were used. The data for univariate and bivariate analysis consisted of 71,515 and 82,633 records on heifers and cows, respectively whereas the data for bivariate analyses for each trait in heifers and cows were 148,269 records. Heifers had better average fertility performance than cows. Estimated heritability of the investigated fertility traits using univariate with LAM were 0.07 or less except AFS and AFC. Moreover, the estimated genetic correlations among fertility traits within heifers (between DFTC and NSPC (0.93), FSC (-0.76), P56 (-0.99) and P90 (-0.99)) and cows (between DFTC and NSPC (0.95), FSC (-0.93), P56 (-0.99), P90 (-0.99), DO (0.90) and CI (0.89)) indicated that selection DFTC in heifers and cows would achieve the largest genetic progress in the ability to conceive and maintain pregnancy (FSC, NSPC). Therefore, DFTC, NSPC or FSC could be used as one of the best indicators for heifer/cow fertility and could be complemented by more highly heritable other traits such as AFS of heifers and DTFS of cows in term of fertility index that would enable efficient selection for better fertility. Additionally, genetic correlations for the same fertility traits between heifers and cows were far from 1. This indicated that fertility traits of heifers and cows are different. Therefore, they should be considered as different traits in genetic evaluation.

Article Details

How to Cite
Buaban, S. ., Sanpote, J., & Duangjinda, M. . (2018). Estimates of Genetic Parameters for Dairy Crossbred Female Fertility Traits. Khon Kaen Agriculture Journal, 46(4), 767–778. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/250165
Section
บทความวิจัย (research article)

References

กรมปศุสัตว์. 2558. รายงานสรุปภาพรวมของโคที่ทำทะเบียนแยกตามสายพันธุ์. สำนักเทคโนโลยีชีวภาพการผลิตปศุสัตว์. ณ วันที่ 5 กุมภาพันธ์ พ.ศ.2561. https://bit.ly/2MHGjKz
วิชัย ทิพย์วงค์, มนต์ชัย ดวงจินดา, เทวินทร์ วงษ์พระลับ, วิโรจน์ ภัทรจินดา, และจินตนา วงศ์นากนากร. 2548. การประมาณค่าพารามิเตอร์ทางพันธุกรรมของลักษณะความสมบูรณ์พันธุ์ ในโคนมด้วยวิธีวิเคราะห์ร่วมหลายลักษณะ. น. 99-100. ใน: สัมมนาวิชาการเกษตร ประจำปี 2548 24 -25 ม.ค. 2548. คณะเกษตรศาสตร์ มหาวิทยาลัยขอนแก่น: 2548.
Abe, H., Y. Masuda, and M. Suzuki. 2009. Relationships between reproductive traits of heifers and cows and yield traits for Holsteins in Japan. J. Dairy Sci. 92: 4055–4062.
Bagnato, A., and P. A. Oltenacu. 1994. Phenotypic evaluation of fertility traits and their association with milk production of Italian Friesian cattle. J. Dairy Sci. 77: 874–882.
Buaban, S., M. Duangjinda, M. Suzuki, Y. Masuda, J. Sanpote, and K. Kuchida. 2015. Short communication: Genetic analysis for fertility traits of heifers and cows from smallholder dairy farms in a tropical environment. J. Dairy Sci. 98: 4990 - 4998.
Buxadera, A. M., and L. Dempfle. 1997. Genetic and environmental factors affecting some reproductive traits of Holstein cows in Cuba. Genet. Sel. Evol. 29: 469–482.
De Haer, L. C. M., G. de Jong, and P. J. A. Vessies. 2013. Estimate of genetic parameters of fertility traits, for virgin heifers in the Netherlands. Interbull Bull. 47: 143–146.
Demeke, S., F. W. C. Neser, and S. J. Schoeman. 2004. Estimates of genetic parameters for Boran, Friesian and crosses of Friesian and Jersey with the Boran cattle in the tropical highlands of Ethiopia: Reproduction traits. J. Anim. Breed. Genet. 121: 57–65.
Eghbalsaied, S. 2011. Estimation of genetic parameters for 13 female fertility indices in Holstein dairy cows. Trop. Anim. Health Prod. 43: 811–816.
Estrada-León, R.J., J.G. Magana, and J.C. Segura-Correa. 2008. Genetic parameters for reproductive traits of Brown Swiss cows in the tropics of Mexico. J. Anim. Vet. Adv. 7: 124–129.
Gianola D. 1982. Theory and analysis of threshold characters. J Anim Sci. 54:1079–1096.
Gianola, D., and J. L. Foulley. 1983. Sire evaluation for ordered categorical data with a threshold model. Genet. Sel. Evol. 15: 201–223.
Guo, G., X. Guo, Y. Wang, X. Zhang, S. Zhang, X. Li, L. Liu, W. Shi, T. Usman, X. Wang, L. Du, and Q. Zhang. 2014. Estimation of genetic parameters of fertility traits in Chinese Holstein cattle. Can. J. Anim. Sci. 94: 281–285.
Jamrozik, J., J. Fatehi, G. J. Kistemaker, and L. R. Schaeffer. 2005. Estimates of genetic parameters for Canadian Holstein female reproduction traits. J. Dairy Sci. 88: 2199–2208.
Kadarmideen H. N., R. Thompson, and G. Simm. 2000. Linear and threshold model genetic parameters for disease, fertility and milk production in dairy cattle. Anim. Sci. 71: 411-419.
Kadarmideen, H. N., and M. P. Coffey. 2001. Quality and validation of insemination data for national genetic evaluations for dairy cow fertility in the United Kingdom. Pages 133–138 in Interbull Bull. No. 27.
Kadarmideen, H. N., R. Thompson, M. P. Coffey, and M. A. Kossaibati. 2003. Genetic parameters and evaluations from single- and multiple trait analysis of dairy cow fertility and milk production. Livest. Prod. Sci. 81: 183–195.
König, S., N. Chongkasikit, and H. J. Langholz. 2005. Estimation of variance components for production and fertility traits in Northern Thai dairy cattle to define optimal breeding strategies. Arch. Tierz. 48:233–246.
Liu A., S. L. Mogens, W. Yachun, G. Gang, D. Ganghui, M. Per, and S. Guosheng. 2017. Variance components and correlations of female fertility traits in Chinese Holstein population. Anim. Sci. and Biotech. 8: 56.
Liu, Z., J. Jaitner, F. Reinhardt, E. Pasman, S. Rensing, and R. Reents. 2008. Genetic evaluation of fertility traits of dairy cattle using a multiple-trait animal model. J. Dairy Sci. 91: 4333–4343.
Ojango, J. M., and G. E. Pollott. 2001. Genetics of milk yield and fertility traits in Holstein-Friesian cattle on large-scale Kenyan farms. J. Anim. Sci. 79: 1742–1750.
Pongpiachan, P., P. Rodtian, and K. Ota. 2003. Reproduction of cross and purebred Friesian cattle in Northern Thailand with special reference to their milk production. Asian-Aust. J. Anim. Sci. 16: 1093–1101.
Pryce, J.E., and R.F. Veerkamp. 2001. The incorporation of fertility indices in genetic improvement programs. Pages 223–236 in Fertility in the High-Producing Dairy Cow. M. G. Diskin, ed. Br. Soc. Anim. Sci. Occ. Publ. No. 26. Edinburgh, UK.
Roche, J.F. 2006. The effect of nutritional management of the dairy cow on reproductive efficiency. Anim. Reprod. Sci. 96: 282–296.
Roxstrom, A., E. Strandberg, B. Berglun, U. Emanuelson, and J. Phillipsson. 2001. Genetic and environmental correlations among female fertility traits and milk production in different parities of Swedish Red and White dairy cattle. Acta Agric. Scand. 51:7–14.
Silvestre, A. M., M. M. D. Ginja, A. J. A. Ferreira, and J. Colaco. 2007. Comparison of estimates of hip dysplasia genetic parameters in Estrela Mountain Dog using linear and threshold models. J. Anim. Sci. 85: 1880–1884.
Sun, C., and G. Su. 2010. Comparison on models for genetic evaluation of non-return rate and success in first insemination of the Danish Holstein cows. Livest Sci. 127: 205–210.
Tiezzi, F., C. Maltecca, A. Cecchinato, M. Penasa, and G. Bittante. 2012. Genetic parameters for fertility of dairy heifers and cows at different parities and relationships with production traits in first lactation. J. Dairy Sci. 95: 7355–7362.
Tsuruta, S., and I. Misztal. 2006. THRGIBBS1F90 for estimation of variance components with threshold and linear models. J. Dairy Sci. 89 (Suppl. 1):15–18.
Veerkamp, R. F., and B. Beerda. 2007. Genetics and genomics to improve fertility in high producing dairy cows. Theriogenology. 68: S266–S73.
Wiltbank M., H. Lopez, R. Sartori, S. Sangsritavong, and A. Gumen. 2006. Changes in reproductive physiology of lactating dairy cows due to elevated steroid metabolism. Theriogenology. 65: 17–29.
Zambrano, J. C., and J. Echeverri. 2014. Genetic and environmental variance and covariance parameters for some reproductive traits of Holstein and Jersey cattle in Antioquia (Colombia). Rev. Bras. Zootec. 43: 132–139.