Some soil properties change in different age of rubber plantation
Main Article Content
Abstract
The objectives of this study were to investigate the change of soil properties in different ages of rubber plantation and the effect of soil properties on aggregation. Carbon concentration, iron oxide content, various size of aggregate, bulk density, aggregate stability and particle size distribution in Ao Luk series (Very-fine, kaolinitic, isohyperthermic Rhodic Kandiudoxs) were analyzed. Soil samples at 0-10 and 10-20 cm from different rubber plantation ages (1, 3, 6, 9, 15 and 20 years) with 4 replications. The results presented that age of rubber plantation at 20 year had a significant highest carbon concentration per area for the both depths. The correlation between carbon concentration and LMA (large macro aggregate) and MWD (mean weight diameter) r = 0.66 and r= 0.66 at 0-10 cm, respectively. We did not find the correlation of carbon and aggregate properties for 10-20 cm but iron oxides showed the relationship on LMA with r =0.73 and MWD with r =0.70.
Article Details
References
สถาบันวิจัยเพื่อการพัฒนาประเทศไทย. 2544. การศึกษาวิจัยเพื่อประเมินผลการดำเนินงานของ สกย.ฝ่ายแผนงานเศรษฐกิจรายสาขา สถาบันวิจัยเพื่อการพัฒนาประเทศไทย.
อารักษ์ จันทุมา, ธีรชาต วิชิตชลชัย, พิศมัย จันทุมา, สุจินต์ แม้นเหมือน, วันเพ็ญ พฤกษ์วิวัฒน์, พนัส แพชนะ, สว่างรัตน์ สมนาค, พิบูลย์ เพ็ชรยิ่ง และสิริวัตร เต็มสงสัย. 2548. การเก็บรักษาก๊าซคาร์บอนในสวนยาง. ใน: รายงานโครงการวิจัยและพัฒนาระบบกรีดสรีระที่เหมาะสมกับการเพิ่มผลผลิตสวนยาง. ศูนย์วิจัยยางฉะเชิงเทรา สำนักวิจัยและพัฒนาการเกษตรเขตที่ 6. 14 หน้า.
Alriksson A., and M.T. Olsson. 1995. Soil changes in different age classes of Norway spruce (Picea abies (L.) Karst.) on afforested farmland. Plant and Soil. 168-169: 103-110.
Bronick, C.J. and R. Lal. 2005. Soil structure and management: a review. Geoderma 124: 3-22.
Denef, K., L. Zotarelli, R.M. Boddey, and J. Six. 2007. Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols. Soil Biology & Biochemistry. 39: 1165–1172.
Elliott, E.T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of American Journal. 50: 627–633.
Eswaran, H., E.V.D. Berg, and P. Reich. 1993. Organic carbon of the world. Soil Science Society of American Journal. 57: 192-194.
Kong, A.Y.Y., J. Six, C. Dennis, R. Bryant, D. Ford, and C. van Kessel. 2005. The relationship between carbon input, aggregation, and soil organic carbon stabilization in Sustainable cropping systems. Soil Science Society of American Journal. 69: 1078-1085.
Lal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma. 123: 1-22.
Lal, R., and J.M. Kimble. 1997. Conservation tillage for carbon sequestration. Nutrient Cycling in Agroecosystems. 49: 243-253.
Lichaikul, N., A. Chidthaisong, N. Withers Havey, and C. Wachrinrat. 2006. Carbon stock and net CO2emission in tropical upland soils under different land use. Kasetsart Journal. 40: 382-394.
Mikha, M.M, and W. Charles. 2004. Rice tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Science Society of American Journal. 68: 809-816.
Muggler, C.C., C.V. Griethuysen, P. Burrman, and T. Page. 1999. Aggregation, organic matter, and iron oxides morphology in Oxisols from Minas Gerais, Brazil. Soil Sci. 164(10): 759–770.
Parry, M., and T. Carter. 1998. Climate Impact and Adaptation Assessment: A Guide to the IPCC Approach. Earthscan, London.
Shrestha, B.M, B.R. Singh, B.K. Sitaula, R. Lal, and R.M. Bajracharya. 2007. Soil aggregate and Particle associated organic carbon under different land uses in Nepal. Soil Science Society of American Journal. 71: 1194-1203.
Siriratpiriya, O., E. Vigerust, and A.R. Selmer-Olsen. 1985. Effect of temperature and heavy metal application on metal content in lettuce. Scientific Report of the Agricultural University of Norway, Norway. Vol. 64. no. 145. 29 p.
Six, J., E.T. Elliott, and K. Paustian. 2000. Soil macroaggregate turnover and microaggregate formation : a mechanism for C sequestration under no-tillage agriculture. Soil Biology& Biochemistry 32:2099-2103.
Smith, J.U., P. Smith, R. Monaghan, and A.J. MacDonald. 2002. When is measured soil organic matter fraction equivalent to a model pool? European Journal of Soil Science. 53: 405-416.
Trakoonyingcharoen, P. 2005. The nature of red Oxisols and Ultisols in Thailand. Ph.D. Thesis. Kasetsart University. 188 p.