Assessment of Genetic Relationship in 29 Thai pumpkin cultivars using AFLP markers
Main Article Content
Abstract
There are several commercial pumpkin cultivars that were selected for similar characteristics such as fruit shape, fresh color, and skin type, and skin color. The hypothesis of this experiment was pumpkin cultivars including commercial cultivar and landrace cultivar in Thailand that are similar of genetic base. The objective of the study is to evaluate genetic diversity of 29 pumpkin cultivars including 25 commercial cultivars (five open pollinated cultivars and 20 F1 hybrid cultivars) and four landrace cultivars using Amplified Fragment Length Polymorphisms (AFLP) markers. From 28 AFLP primers, seven primers were able to amplify 168 polymorphic bands. All cultivars were clustered using UPGMA (Unweighted pair group method with arithmetic average) method based on dice similarity coefficient. Dice similarity coefficients are between 0.21 and 0.96 with the average 0.81. Twenty nine pumpkin cultivars were grouped into 2 groups which group1 included 23 cultivars that were both commercial and landrace cultivars. Group 2included two cultivars and four cultivars were out group. When Neighbor-joining clustering method based on standard genetic distance was used, 29 pumpkin cultivars were grouped into3 groups and six pumpkin cultivars were out group. From two clustering methods, Thai commercial pumpkin cultivars currently was similarity genetic base and five pumpkin cultivars that are Tung, K-Tone, KPS-1, CM-1, and EP selected for parent line in pumpkin breeding program.
Article Details
References
ปณาลี ภู่วรกุลชัย, สราวุฒิ เกตุแก้ว, เขมวรรณ ศรีตงกิม, บุบผา คงสมัย และอัญมณี อาวุชานนท์. 2555. การศึกษาความสัมพันธ์ทางพันธุกรรมด้วยเครื่องหมายดีเอ็นเอ SRAP และลักษณะคุณภาพผลของฟักทองพันธุ์การค้าของไทยบางพันธุ์. การประชุมวิชาการแห่งชาติ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน ครั้งที่ 9. 1100-1106.
Agawal, G.K., R.N. Pandey, and V.P. Agawal. 1992. Isolation of DNA from Cheorospondias asillaris leaves. Biotech Biodiv Lett. 2: 19-24.
AVRDC. 2007. Available: http://goo.gl/Vp6e7A. Accessed Jan. 15, 2012.
Creste, S., D.M. Sansoli, A.C.S. Tardiani, D.N. Silva, F.K. Goncalves, T.M. Favero, C.N.F. Medeiros, C.S. Festucci, L.A. Carlini-Garcia, M.G.A. Landell, and L.R. Pinto. 2010. Comparison of AFLP, TRAP and SSRs in the estimation of genetic relationships in sugarcane. Sugar Tech. 12(2): 150-154.
Du X.Y., Q.L. Zhang, and Z.R. Luo. 2009. Comparison of four molecular markers for genetic analysis in Diospyros L. (Ebenaceae). Plant Syst. 281: 171-181.
Ferriol, M., B. Pico, and F. Nuez. 2003. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet. 107: 271-282.
Ferriol, M., B. Picó, P.F. Córdova, and F. Nuez, 2004. Molecular diversity of a germplasm collection of squash (Cucurbita moschata) determined by SRAP and AFLP markers. Crop Sci. 44: 653-664.
Garcia, J., M. Oliver, and H. Gomez-Paniagua. 2000. Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor Appl Genet. 101: 860-864. germplasm using the AFLP technique. Hort. Sci. 38(1): 81-84.
Gwanama, C., M.T. Labuschagne, and A.M. Botha. 2000. Analysis of genetic variation in Cucurbita moschata by random amplified polymorphic DNA (RAPD) markers. Euphytica. 113: 19-24
Hurtada, M.A., A. Westman, E. Beck, G.A. Abbott, G. Llacer, and M.L. Badenes. 2002. Genetic diversity in apricot cultivars based on AFLP markers. Euphytica. 127: 297-301.
Levi, A., C.E. Thomas, T. Trebitsh, A. Salman, J. King, J. Karalius, M. Newman, O.U.K Reddy, Y. Xu, and X. Zhang. 2006. An extended linkage map for watermelon based on SRAP, AFLP, SSR, ISSR and RAPD markers. J. Amer. Soc. Hort. Sci. 131(3): 393-402.
WebMD. 2015. Vitamins and Supplements Lifestyle Guide. Available: http://goo.gl/yW6LZg. Accessed May. 12, 2015.
Nei, M. 1972. Genetic distance between populations. Amer. Nat. 106: 283-291.
Nei, M., and W.H. Li. 1979. Mathematical models for studying genetic variation in term of restriction endonucleases. Proc. Natl. Acad. Sci. 76: 5268-5273.
Nei, M., and W.H. Li. 1979. Mathematical models for studying genetic variation in term of restriction endonucleases. Proc. Natl. Acad. Sci. 76: 5268-5273.
Saitou N., and M. Nei. 1987. The Neighbor-joining Method: A new method for reconstructing phylogenetic trees. Mol. Biol.Evol. 4(4): 406-425.
Tamura, K., M. Nei, and S. Kumar. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. The National Academy of Sciences of the USA. 101: 11030-11035.
Teulat, B., C. Aldam, R. Trehin, J.H.A. Barker, G.M. Arnold, A. Karp, L. Baudouin, and F. Rognon. 2000. An analysis of genetic diversity in coconut (Cocos nucifera) populations from across the geographic range using sequence-tagged microsatellites (SSR) and AFLPs. Theor Appl Genet. 100: 764-771.
Thermo Fisher Scientific Inc. 2015. Selective amplification start-up kit for small plant genome, 50-500 Mbp. Available: https://goo.gl/5XaC3k. Accessed July. 4, 2015.
Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA Fingerprinting. Nucleic Acids Research. 23(21): 4407-4414.
Wu, J., Z. Chang, Q. Wu, H. Zhan, and S. Xie. 2011. Molecular diversity of Chinese Cucurbita moschatagermplasm collections detected by AFLP markers. Scientia Horticulturae. 128: 7-13.
Y. Xu, and X. Zhang. 2006. An extended linkage map for watermelon based on SRAP, AFLP, SSR, ISSR and RAPD markers. J. Amer. Soc. Hort. Sci. 131(3): 393-402
Zhang, D., J. Cervantes, Z. Huaman, E. Carey, and M. Ghislain. 2000. Assessing genetic diversity of sweet potato (Ipomoea batatas (L.) Lam.) cultivars from tropical America using AFLP. Genetic Resources and Crop Evolution. 47: 659-665.